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Disentangling variational bias: the roles of
development, mutation, and selection

Genetics
Highlights
Population genetics often assumes that
random mutations lead to a uniform dis-
tribution of phenotypic variation, which is
then acted upon by natural selection.

However, growing evidence suggests
that the phenotypic variation available
to natural selection is not isotropic, but
rather constrained and biased by various
factors, including genetic architecture,
mutation, and developmental systems.
Such limitations and biases in the
variability of phenotypic characters are
referred to as variational bias.

It is critical to clarify what we measure
when we measure variational bias, and
how different types of variational bias
relate to one another.
Haoran Cai1, Diogo Melo2,3,4, and David L. Des Marais 1,*

The extraordinary diversity and adaptive fit of organisms to their environment de-
pends fundamentally on the availability of variation. While most population ge-
netic frameworks assume that random mutations produce isotropic phenotypic
variation, the distribution of variation available to natural selection is more re-
stricted, as the distribution of phenotypic variation is affected by a range of fac-
tors in developmental systems. Here, we revisit the concept of developmental
bias – the observation that the generation of phenotypic variation is biased due
to the structure, character, composition, or dynamics of the developmental sys-
tem – and argue that a more rigorous investigation into the role of developmental
bias in the genotype-to-phenotype map will produce fundamental insights into
evolutionary processes, with potentially important consequences on the relation
between micro- and macro-evolution. We discuss the hierarchical relationships
between different types of variational biases, including mutation bias and devel-
opmental bias, and their roles in shaping the realized phenotypic space. Further-
more, we highlight the challenges in studying variational bias and propose
potential approaches to identify developmental bias using modern tools.
Amore rigorous investigation into the role
of developmental bias in the genotype-
to-phenotype map is needed to bridge
micro-evolution and macro-evolution.
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What is variational bias
The observed diversity of life on Earth represents a fraction of theoretically possible phenotypes in
living organisms [1–4]. Indeed, the fossil records demonstrate prolonged periods of stasis in
numerous lineages, and convergent evolution is widespread [5,6]. Yet, an enduring fundamental
assumption of modern evolutionary theory is that ‘universal variability — small in amount but in
every direction’ is a key factor governing the agency of natural selection [7,8]. For example,
Fisher’s geometric model assumes that mutations are isotropic (i.e., the magnitude and direction
of effects prior to selection are uniform with respect to the phenotypic space) [9–11]. This
assumption remains a dominant paradigm in population genetics, despite mounting evidence
challenging its universality [12,13]. Phenotypic variation is profoundly structured, and variation
and evolution are related at multiple timescales [14–16]. While functional and population geneti-
cists have made great progress towards an understanding of heredity, mapping genotype
onto phenotype, and the mechanisms and consequences of natural selection, the structure
of variation accessible to selection remains elusive [17]. The structure of variability leads to
variational constraints, which are limitations and biases in the variability of phenotypic charac-
ters. These constraints represent one of the central classes of evolutionary constraint [18].
These constraints are the outcome of a broader set of factors, including genetic architecture,
mutation, and development, and are observed at all levels of biological organization (Figure 1,
Key figure). Different types of constraints can affect evolutionary processes – and phenotypic
outcomes – in distinct ways. It is thus critical to clarify what we measure when we measure
variational constraints, and how different types of variational bias relate to one another, as
they are frequently intertwined.
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Key figure

Hierarchical relationships of the concepts and empirical measurements
related to variational biases

TrendsTrends inin GeneticsGenetics

Figure 1. Because of mutational bias, a subset of genotype is more likely to occur in the genotype space of possible
mutation. The genotype space is translated to the phenotype space through the process of development, which can
impose developmental bias. Not all phenotypes in the phenotype space are accessible due to developmental bias, which
leads to an explorable phenotype space that is a subset of the total possible phenotype space. Mutation accumulation
(MA) lines capture both the mutation bias and developmental bias, which leads to a realized phenotypic space that is a
subset of (explorable) phenotypic space. Therefore, the ‘explorable’ phenotypic space is influenced solely by developmental
bias while the ‘realized’ phenotypic space is a result of both mutation and developmental bias as captured by MA lines.
Other evolutionary forces such as selection, migration, and drift interact with mutational variation (M) in the realized
phenotype space to shape G.
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Identifying the sources of variational bias
Variational constraints are routinely characterized by measuring the linear association between
traits in a population, and covariance matrices derived from these phenotypic measurements
will capture different aspects related to the causes and consequences of variational bias
[15,19–24]. For example, genetic information summarized by the additive genetic variance–co-
variance matrix – commonly referred to as G – is a common measure of variational constraint
in plant and animal breeding. G specifically describes trait covariance due to pleiotropic alleles,
wherein variation at a single locus has effects on multiple traits, or due to linkage disequilibrium
of two loci that are strongly associated in populations [22,25–27]. Although the role of linkage
disequilibrium may be negligible, it is not straightforward to distinguish linkage disequilibrium
from pleiotropy empirically in generating G [28–31]. In evolutionary quantitative genetics, G
represents an important constraint because it describes the degree to which the genetic
architecture (i.e., how traits are genetically connected to each other) may determine the
response of a population to selection [32,33]. Indeed, the genetic (co)variance is the most
relevant parameter to the concept of ‘evolvability’, viewed as the population’s capacity to
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respond to directional selection [34,35]. The context-dependency of G, the evolution of
evolvability itself, and how evolvability predicts the trait divergence and stasis under selection
has garnered much of the empirical and theoretical attention to variational bias over recent
decades [16,19,36–52].

While G is a measure of the amount and structure of standing genetic variation, new variation
generated by new mutations can be characterized by a mutational variance–covariance matrix
M [15,53]. The M-matrix can be estimated through mutation accumulation (MA) experiments
under a relatively selective-neutral environment and small effective population size. WhileM itself
provides information about the genotype-to-phenotype map, and hence developmental bias, it
also captures bias caused by heterogeneous mutation rates and mutation spectra across the
genome (Figure 1) [54–61]. In other words, M can reflect the inherent limitations in the genotype
space that favor specific mutational outcomes (e.g., more mutable single nucleotide, transition-
transversion bias). Thus, M, acquired through MA experiments, includes developmental bias,
but is not limited to developmental bias [55]. Mutation bias is the bias specifically produced during
the mutational process (Figure 2 left)without including the effects of development on phenotypes
(Figure 2 middle). Thus,M, the mutation variance–covariance matrix, naturally captures both de-
velopmental and mutation bias.

Themagnitude and direction ofG can provide information about the degree to which evolutionary
constraints may be present in a population. G is the product of many factors, including develop-
ment, mutation, selection, drift, migration, and inbreeding [29,62–67]. The specific mechanisms
and relative contributions of various factors in shaping and maintaining G remain poorly under-
stood. A major complication is that, almost certainly, these contributions can dramatically differ
between different sets of traits or trait combinations. Empirically, the contributions of M and
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Figure 2. A hypothetical scenario showing influences of mutation bias and developmental bias on adaptation
Mutations are biased such that some mutations are more likely to occur than others (left). Developmental processes then
translate genotypic variation into phenotypic space, potentially imposing developmental bias (middle). Such biased
phenotypic distribution interacts with drift and selection to form the distribution of population under mutation-selection
equilibrium (right). However, both mutation bias and developmental bias can evolve in response to selection. Whether the
timescale of the evolution of developmental and mutation bias is longer than the trait adaptation is often unknown
Unbroken arrows represent processes occurring over short timescales, while broken arrows indicate processes tha
possibly occur over similar or longer evolutionary timescales.
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selection to shaping G can be inferred by comparing G to M, or comparing G to γ , the matrix
describing multivariate nonlinear selection. If G is shaped by M, then in equilibrium, G should
be proportional toM [68]. A recent simultaneous estimate of bothG andM in the sameDrosophila
serrata population indeed shows some proportionality between the two matrices, showing a
contribution of mutation bias to additive genetic variation [53]. Surprisingly, in this population, M
appears to be more constrained than G, which implies that selection can act to break the
constraints imposed by mutation, contrary to the usual assumption that stabilizing selection
increases genetic correlations. This result illustrates how nonintuitive and case dependent the
shaping of G might be. Furthermore, other multivariate analyses suggest differences between G
andM [69–74]. Notably, Houle and colleagues foundG andM to bemarkedly similar for wing traits
in Drosophila melanogaster and M reliably predicts patterns of wing divergence across
drosophilids [15], although how well they align is subject to debate [75,76].

One distinction between G and other variational constraint is that developmental and mutational
biases can vary among individuals and genotypes both empirically and in theory [74,77–80], while
G, or more broadly phenotypic correlation, is a measure of a given population. The (co)-variance
in G explained by each polymorphic locus is affected by allele frequencies and the magnitude of
allelic effects in an individual [81,82].

Theoretical and empirical studies suggest that M-induced genetic correlations tend to be more
stable than genetic correlation caused by selection, implying that identifying the mechanisms
causing genetic correlations may help us understand the evolution of G [29,83]. Furthermore,
the genetic architecture of G may be informative in inferring the drivers of G (selection versus
M), since those structures of linkage disequilibrium and pleiotropy in the genome are footprints
of distinct forces when inducing and maintaining G. Selection can also reshape M (Figure 2),
although the timescale on which the evolution of M occurs – relative to phenotypic evolution –

is unclear; we may be able to treat M as constant under most evolutionary scenarios [74,80].

Collectively, we argue that clear and distinctive definitions of variational biases at different
levels are needed to ensure effective communications and nuanced analyses in the future
(Figure 1).

Developmental bias in the production of phenotype
An important aspect of genotype-to-phenotype maps is that they are highly nonlinear and struc-
tured in nature. Therefore, random mutations do not necessarily produce random phenotypic
changes. The distribution of phenotypic variants arising from genetic and environmental variation
is influenced by the developmental processes that transform the embryonic phenotype into
the adult form [84,85]. This developmental process biases the generation of phenotypic variation.
This bias stems from the structure, character, composition, or dynamics of development,
contrasting with the assumption of isotropic variation, and ultimately results in developmental
bias [2,78,86–88].

Numerous empirical studies have hypothesized that an organism’s developmental system
shapes the trait–trait (co)variance observed in G, which has been described as phenotypic inte-
gration [18]. Development is therefore a critical factor in shaping the variational bias reflected in
M and G [89]. Substantial evidence supports that this developmental bias is common
[55,90–93]. For example, the developmental regulation of tetrapod limbs generates biases in
the number and distribution of digits and limbs [94,95]. Interactions among components in a
developmental system bias trait–trait relationships, as seen in insects and pigment coloration of
insect wings [96,97].
4 Trends in Genetics, Month 2024, Vol. xx, No. xx
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While selection ultimately shapes developmental systems, such intrinsic biases from developmen-
tal systems are likely to be an important component of phenotypic evolution [78,87,92,98–100].
Firstly, the bias in genotype and phenotype production stands as a phenomenon distinct from
phenotypic adaptation, with each being subject to separate evolutionary dynamics [36,98]. Conven-
tionally, it is thought that developmental biases evolvemore gradually than the traits that they influence
[36]. Secondly, although certain parts of developmental systems remain evolvable and susceptible to
selective pressures, prevailing global constraints resist alteration [86,101]. Exemplifying this notion,
resource acquisition is limited due to chemical, thermodynamic, and mechanistic constraints
[102–104], leading to trade-offs between, for example, growth rate and yield in Escherichia
coli [102], or between spore number and quality in Dictyostelium discoideum [105]. Another
well-known example comes from the metabolic scaling law, which states that metabolic rate
scales with body mass to the power of 3/4. A wide range of organisms over several orders
of magnitude in body mass conform to this law. Of course, one could certainly argue that it is
purely natural selection that drives these points to fall along a predictable trajectory throughout
evolutionary history. But there are theoretical arguments that demonstrate such metabolic
scaling is caused, at least in part, by physical forces imposing constraints, or by biases in
patterns of energy allocation [106–108].

Importantly, the relationship between adaptation of traits and developmental bias is not simply
one of opposition, but is instead the result of a continuous dynamic interaction. Therefore, we
can only ask whether developmental bias alters evolutionary trajectories in relatively short time-
scales [18]. For instance, two regulatory networks may yield similar functional outputs but differ
in their variational properties, leading to different evolutionary biases [109]. However, over a time-
scale of macro-evolution, it is difficult to disentangle the contribution of developmental bias and
selection in phenotypic adaptation. This difficulty arises because, first, the bias in phenotypic
production itself can evolve. Second, reconstructing the evolutionary history of variational bias
is not straightforward unless the mutation and developmental bias remain relatively constant
over macro-evolutionary timescales. An outstanding practical problem is: can we consider
developmental bias as constant and, if so, over what timescales? (Figure 2).

Emerging methods for measuring developmental bias
The evolutionary significance of developmental bias has long been controversial because, as we
argue, it can be difficult to accurately diagnose. Natural selection and random genetic drift
strongly affect the patterns of phenotypic variation within and between populations, making it
unsatisfying to rely solely on measurement of existing phenotypic variation when attempting to
identify developmental bias [26,110]. Given that both developmental bias and selection could
create similar phenotypic distribution in natural populations, it is generally difficult to distinguish
between the two [18,32]. To quantitatively investigate developmental bias, researchers need to
assess the propensity of phenotypic production prior to selection rather than merely observing
the current state of variation [98].

One traditional approach to distinguish between the effects of developmental bias and selection
is through MA lines to assess the spectrum of phenotypic variation generated by de novomuta-
tion in the absence of selection [15,79,111]. However, as mentioned earlier, de novo mutation
captures not only the propensity of the developmental system to vary, but also heterogeneity in
mutational rates and spectra across a genome, which constrains the mutation in genotype
space (Figure 1, e.g., more mutable single nucleotide, transition-transversion bias, etc.
[54–56,60,112]). Alternatively, certain well-characterized developmental systems, such as mam-
malian tooth morphology [113] and vulva development [114], can be sufficiently well modeled so
that a large number of perturbations can be simulated to evaluate the variability in silico. However,
Trends in Genetics, Month 2024, Vol. xx, No. xx 5

CellPress logo


Trends in Genetics
this method is feasible only for a few systems for which we have relatively complete knowledge of
intricate developmental dynamics.

Another approach to diagnose developmental bias is to measure the symmetry of the left and
right sides of the same organism – so-called ‘fluctuating asymmetry’ – [55,115,116], which
share both a genome and environment. However, the developmental process can introduce
asymmetry in morphological traits due to inevitable consequences of molecular stochasticity,
often interpreted as developmental variability. The developmental variability is specifically quanti-
fied as the variance–covariance matrix of deviation from symmetry, which describes the corre-
lated shape changes due to the noise. A recent study showed that developmental bias
quantified using such internal variability in the dipteran wing predicts its evolution on both short
and long evolutionary timescales [55]. Ultimately, addressing the evolutionary role of developmental
bias requires studies in more systems. We thus propose alternative and existing methods to
characterize developmental bias, thereby reducing reliance on the limited developmental systems
exploited in past studies.

In line with the concept of fluctuating asymmetry, there are multiple ways to assess the propensity
of the system to vary by inducing mild and random (environmental or genetic) perturbations. The
phenotypic variation in a genetically identical population, under the same environmental condi-
tions, has often been referred to as intra-genotypic variability [117,118] or phenotypic variability
[119–121], which is thought to be an emergent by-product of developmental processes [121].
Such variability reflects both the results of stochasticity in molecular interactions and of external
sources caused by microenvironmental variation [122–124] and has been explored theoretically
within evolutionary contexts [125–128]. These extrinsic and intrinsic small random fluctuations
interact with developmental systems and give rise to the phenotypic variability. Thus, we hypothe-
size that the variational properties induced by random small perturbations most likely reflect the
inherent attributes of the system rather than the certain direction of the perturbation (e.g., changes
of a nutrient level, single gene knockout etc.). Indeed, such phenotypic variability has been used to
characterize developmental systems in many studies [129–131], though these studies have not
explicitly addressed developmental bias. For example, examining variational properties under iden-
tical environmental conditions across clonal cells helps quantify the developmentally correlated
traits in yeast morphology [131].

Over the past few decades, studies of gene expression evolution have proliferated owing to the
reduced cost of RNA sequencing. This has led to a surge of studies on canalization and mod-
ularity and phenotypic integration at the molecular level has followed [132–135]. These con-
cepts are all connected to the classic notion of developmental constraint [14]. Yet, few
studies have used expression variability to address these questions. Much efforts in gene
expression variability have been taken to assess the genomic, epigenetic, and topological
features in determining the gene-specific expression variability level [124,136]. We argue that
genome-scale expression variability data can be exploited to investigate the bias in the produc-
tion of gene expression and, ultimately, contribute to our understandings of evolution in gene
expression [137].

Another way to impose random perturbations is through random mutation. As discussed earlier,
the variants captured in MA experiments account for the heterogeneity of mutation rates and
other mutational bias across the genome (Figure 1), which is an informative way to unravel the
role of mutation during evolution. Unfortunately, MA studies provide a very limited view of the
distribution of mutational effects because the number of spontaneous mutations sampled in
each study tends to be very low [138]. One approach to ameliorate these limitations is to
6 Trends in Genetics, Month 2024, Vol. xx, No. xx
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Outstanding questions
How does the indirect adaptation of
variation generation (mutation and
developmental bias) to environments
contrast with the direct adaptation of
phenotypic traits?

Does the rate of adaptation differ among
different types of variational bias?

Is developmental bias a relatively
more stable component than genetic
variance–covariance structures?

How do we utilize genome-scale ex-
pression variability data to investigate
the bias in the production of gene ex-
pression and contribute to our under-
standing of gene expression evolution?

How dowe characterize developmental
bias without depending on specific
developmental systems?

Canwe consider developmental bias as
constant and, if so, at what timescales?

How does developmental bias shape
macro-evolutionary patterns?
introduce mutation without incurring mutational bias during de novo mutation. For example,
genome-wide mutagenesis [138], as opposed to de novomutation, provides an empirical inves-
tigation of bias in phenotypic production and reveals a greater neutral expression divergence than
commonly used models of phenotypic evolution. Examples of mutagenic populations include
Arabidopsis T-DNA insertion lines [139], yeast single-cell deletions [140], and, more recently,
single-cell technologies such as Perturb-Seq [141] and CRISPR-mediated genetic screening
[142]. A similar outcome and mutational landscape of a given trait (trait combination) from a
wide-range of variants across the genome would be indicative of developmental or mutation
bias. Alternatively, artificial recombinant populations provide mutational perturbative materials
to examine the propensity of the system to vary [29,143].

Recent advances in high-throughput phenotyping facilitate the goal to disentangle variational
bias. These advances include both large-scale platforms for growing and manipulating both pro-
karyotic [144] and eukaryotic [145] organisms, but also imaging and other systems for measuring
traits at high resolution [146]. One advantage of automated, often time-sequenced phenotyping
of highly replicated experimental populations is the possibility of reducing measurement error,
thus increasing the power to detect subtle phenotypic differences among clonal, inbred, or
recombinant populations.

Concluding remarks
One long-standing proposition for bridging the mechanistic gap between micro- and macro-evo-
lution has been through the study of evolutionary developmental biology and ontogeny [90,147].
Here, we argue that progress in integrating micro- and macro-evolutionary theory has been ham-
pered by the common assumption in population genetics that genotype-to-phenotype mapping is
a straightforward exercise emerging from an invariant distribution of mutational effects. There is
substantial evidence that variational bias is common. Such bias may stem from factors in mutation,
genetics, and development.We argue that clear and distinct definitions of and diagnostic criteria for
variational biases at different levels of organization (Figures 1 and 2) are needed to help better un-
derstand the role of variational bias in adaptation and how evolution shapes it. Furthermore, as we
have shown, developmental bias is notoriously difficult to establish empirically. We thus review and
propose approaches aimed at identifying developmental bias and testing for its role in shaping phe-
notypic evolution (Table 1). In particular, we argue that a large number of untargeted and random
perturbations can be exploited to assess the propensity of the system to vary and, hence, the bias
of phenotypic production. Collectively, we present challenges in studying variational bias and its
role in shaping evolutionary history and impacting future adaptation (see Outstanding questions).
Table 1. Summary of potential empirical methods to detect developmental bias

Type Source of perturbations Caveats

Mutation accumulation experiment (MA) De novo mutation Includes both mutation and
developmental bias; the sample size
is limited

Untargeted mutagenesis (e.g., chemical mutagen
ethyl methanesulfonate (EMS) [138], T-DNA [139])

Induced mutation Possible bias from large effect size
mutations

Recombinant strains Recombinant mutation Possibly involve selection, since alleles
in the parents are fixed

Phenotypic variability using clonal individuals Micro-environmental
variation

Potential nonnegligible effect of
measurement error

Perturb-seq [141] (also known as CRISP-seq
and CROP-seq)

Induced mutation Suitable for single-cell transcriptomic
studies
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