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Most biological systems are formed by component parts that are to some degree interrelated. Groups of parts that are more

associated among themselves and are relatively autonomous from others are called modules. One of the consequences of mod-

ularity is that biological systems usually present an unequal distribution of the genetic variation among traits. Estimating the

covariance matrix that describes these systems is a difficult problem due to a number of factors such as poor sample sizes and

measurement errors. We show that this problem will be exacerbated whenever matrix inversion is required, as in directional

selection reconstruction analysis. We explore the consequences of varying degrees of modularity and signal-to-noise ratio on

selection reconstruction. We then present and test the efficiency of available methods for controlling noise in matrix estimates.

In our simulations, controlling matrices for noise vastly improves the reconstruction of selection gradients. We also perform an

analysis of selection gradients reconstruction over a New World Monkeys skull database to illustrate the impact of noise on such

analyses. Noise-controlled estimates render far more plausible interpretations that are in full agreement with previous results.
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The study of biological systems and its component parts, whether

molecules, cells, tissues, organisms and its forming parts, and

even species and their interactions, is rapidly converging to the

central theme of modularity. This refers to the connections among

some of the component parts of a biological system (genes or

morphological traits, for example) and the lack of such associa-

tions among other parts of the same system. (Olson and Miller

1958; Berg 1960; Wagner et al. 2007). The notion that interact-

ing parts are not independent is intuitive and appears early in

the history of Biology (see Mayr 1982). Therefore, modularity is

quickly becoming one of the central questions in modern biology

(Wagner et al. 2007; Klingenberg 2008) and a point of conver-

gence of various specialties and areas (Mathematics, Statistics,

Genetics and Genomics, Evolutionary Biology, Ecology, Bio-

chemistry, and Physiology).

In biology, several types of modules have been recognized,

including (1) functional, consisting of characters or features that

act together on performing a task or function and are quasi-

autonomous in relation to other functional sets; (2) developmental,

which corresponds to parts of an embryo that are relatively au-

tonomous with respect to pattern formation and differentiation,

or an autonomous signaling cascade; (3) variational, composed

of characters that vary together and are relatively independent of

other such sets (Wagner et al. 2007).

The study of modularity is centered on statistical estimation

of association among traits (Olson and Miller 1958; Berg 1960).

Whether such association is measured by correlation, covariance,

or distance/similarity measures, it is usually represented by ma-

trices. Even if a particular system or network does not present a

modular structure or is not being interpreted under this theory, as-

sociations among traits, parts, genes, or lineages will still be quan-

tified by statistical association or dissociation matrices among

these elements. We will focus here on correlation or covariance

matrices (from now on C-matrix) among variables, although the
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same problem appears in any statistics of association/dissociation

among the component parts of any system. As biologists, what we

usually do is to sample nature and infer properties from natural

systems using measures and statistics obtained from such sam-

ples. We should be aware of the fact that by sampling a population

we do not have the true population parameter values but only esti-

mates of these quantities. These estimates will be approximations

that should converge to the true population value depending on

a number of things, such as sample size, number of parameters

considered, precision of the measuring device, and the quality of

parameter estimators themselves, measured by their precision and

accuracy (Sokal and Rohlf 1995). The general trend is that, as the

ratio between number of parameters and sample size decreases,

signal-to-noise ratio will increase. For C-matrices, this effect is

summarized by their sampling distribution (the Wishart distribu-

tion) and can be expressed in terms of their eigenvalues (see next

section and Meyer and Kirkpatrick 2008).

In this article, we illustrate the problem of noise in matrix

estimation using modularity as our framework and addressing ef-

fects of matrix estimates in the context of natural selection. The

evolutionary response of a set of quantitative traits is described

by �z̄ = Gβ, where �z̄ is the vector of differences in means be-

tween generations, β is the selection gradient vector, and G is the

additive genetic covariance matrix (Lande 1979). Rearranging

the evolutionary response equation, the pattern of selection re-

sponsible for populations’ divergence can be reconstructed from

observed mean differences using the relationship:

β = G−1�z̄, (1)

where β is the cumulative selection gradient summed over gen-

erations (net-β sensu Lande 1979), G−1 is the inverse of G, and

�z̄ = (z̄i − z̄ j ) is the difference in means between populations i

and j (Lande 1979; Lofsvold 1988; Cheverud 1996). Selection re-

construction can be extremely useful in understanding patterns of

multivariate selection within a microevolutionary context (Boag

1983; Lande and Arnold 1983; Grant and Grant 1995), and if

certain assumptions hold (see Marroig and Cheverud 2001, 2004,

2005, 2010) it can be extended to a macroevolutionary context.

We illustrate here how noise associated with sampling in ma-

trix estimation can lead to error in β reconstruction using a simu-

lation approach. We also illustrate how changing both number of

modules and magnitude of association among elements in a sys-

tem will affect matrix estimation and β reconstruction. We present

possible solutions that could help ameliorate the noise problem

in matrix estimation and test the performance of such solutions.

Finally, we illustrate the analyses of selection reconstruction in a

well-studied case, New World Monkeys (NWMs) skull evolution,

and show how previously estimated β’s (Marroig and Cheverud

2005) are most likely dominated by noise and how estimates of

these gradients, after controlling for noise, lend an interpretation

in full agreement with results obtained using a different approach

on the same dataset (Marroig and Cheverud 2010).

Materials and Methods
BACKGROUND—EXTENSION APPROACH

The study of quantitative traits is largely based on C-matrices.

Estimation of these matrices is usually done in a straightforward

manner, simply sampling a population of interest and estimating

the population covariance matrix for a set of p traits using the

sample covariance matrix obtained from a group of n individuals.

This method has its appeal derived from the fact that this estimator

is the maximum likelihood (ML) estimator under multivariate

normality.

However, when dealing with small datasets, in which the

number of parameters being estimated is close to the number of

individuals or even an order of magnitude smaller, one can ex-

pect substantial error to be present in the estimated matrix. This

problem is even more severe when sample size n is smaller than

the number of traits p, when the sample matrix becomes singular.

This is clearly a problem, which stems from the fact that the ML

estimator is only asymptotically convergent to the true value, and

for small datasets, it is possible to improve greatly on it (Stein

1956). The effect can become even more critical in the genomic

era where large matrices are estimated for hundreds or thousands

of genes with very few observations. Usually in quantitative ge-

netics, the ML estimator is good enough, so this convergence

problem is overlooked in most cases. But when theory demands

matrix inversion, this “noise” associated with undersampling be-

comes very apparent. In particular, it greatly affects selection

reconstruction analysis and must be taken into account in such

studies, as we show later on.

One simple example of the noise involved in matrix esti-

mation can be visualized in the complete absence of modularity

(40 independent traits), so even when dealing with uncorrelated

traits of equal variance (or with the correlation matrix for these

traits) where one would expect eigenvalues of the C-matrix to be

equal, in practice only with very large sample sizes these eigen-

values tend to approach the expected value (see Fig. 1A and Horn

1965). This phenomenon occurs because although the ML esti-

mator for C-matrices provides an unbiased estimator for the mean

of its eigenvalues, as expected by the sampling distribution of C-

matrices, their variance is overestimated (Meyer and Kirkpatrick

2008). This “spreads” individual eigenvalue estimates, increasing

the larger and decreasing the smaller ones.

We can visualize the effect of noise by plotting the distri-

bution of estimated correlations for different sample sizes, as

presented in Figure 1B for this uniform matrix. Notice that, by

chance alone, with small sample sizes, although the average of
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all 780 pairwise correlations is zero as expected, the range of

observed values is between −0.6 and 0.6 for n = 20, and even

with n = 200 we still observe correlations ranging from −0.25

to 0.25. All those correlations would indicate moderate associa-

tion between traits despite the fact that they are independent. The

situation is dramatically improved by using the extension method

detailed below.

The extension approach was recently introduced by Hayden

and Twede (2002) (also Twede and Hayden 2004) as way to

improve performance of spectral filtering algorithms based on

covariance matrix inverses. The idea is based on the argument

that matrices are estimated with some degree of error and this

noise is actually amplified and dominates inverted matrices. A

C-matrix (C) can be represented by the following equation:

C = V T �V, (2)

where V is a square matrix of normalized eigenvectors, � is

a square diagonal matrix of eigenvalues λi ; the superscript T

denotes matrix transpose. The inverse of C is given by:

C−1 = V T �−1V, (3)

where the diagonal elements of �−1 are the inverse of each eigen-

value ( 1
λi

). When λi becomes small, the estimate C−1 becomes a

poor estimate of the true inverse. This is due to a number of fac-

tors, but particularly in biological systems because of sampling

error in the estimation and the fact that modularity reduces the

dimensionality of C. The smallest eigenvalues are the ones that

concentrate the most noise in the estimate of C, and will become

the dominant figure in the inverted matrix C−1, which is obvious

if we think in terms of the inverted eigenvalues. For example, a

0.1 eigenvalue in � will become 10 in �−1, and a smaller one of

0.0001 will become 10,000. Because those last eigenvalues are

precisely those with larger error in their estimates (Fig. 1), this

unduly contribution to C−1 will affect the performance of anal-

yses based on this matrix and consequently the inferences draw

from it.

Here we treat the sequence of sorted eigenvalues as a dis-

crete function defined on (say) the natural numbers from 1 to

p, where p is the number of traits. The second derivative of this

function is defined by λi−1 − 2λi + λi+1. for the ith point. Using

this definition, it is possible to find the region of the eigenvalues

distribution corresponding to noise by inspecting these values and

finding the minimum value of the second derivative. Subsequent

eigenvalues should then be replaced by the last reliable eigen-

value (the extended eigenvalue). This was the original criterion

from Hayden and Twede (2002) to find the noise-floor region.

We here modified this approach by taking the absolute values of

this second derivative and then calculating the variance of those

values in groups of 3–5 consecutive second derivatives. When

this variance approaches zero (0.001 or 0.0001), the noise-floor

region is reached and subsequent eigenvalues should be replaced

by the last reliable eigenvalue (see Fig. 2 for an example of both

approaches). The point when the variance is sufficiently close to

zero is somewhat variable, depending on the scale of the organism

(the total amount of variation in the matrix) and the amount of

noise in the estimated matrix, and should be analyzed graphically

on a case-by-case basis. In an attempt to minimize this effect, in-

stead of working directly with the eigenvalues, we use the amount

of variation that each one explains, or, more clearly, we divide

each eigenvalue by their sum. We compare both criteria in the

following sections.

Notice that C (and C−1) are not truncated and still maintain

their full rank, and that eigenvectors (V) are not changed but

only adjusted in their variances (eigenvalues) in dimensions with

very little variation. This means that matrix structure is essentially

preserved by using this approach.

SIMULATION AND BOOTSTRAP

We used a simulation strategy with resampling via bootstrap to

explore the impact of sampling error, modularity, and noise on

reconstructing selection gradients. This strategy was designed to

represent the variation in modularity patterns and, most notably,

magnitude that is observable across skull variation in mammalian

taxa (see Marroig and Cheverud 2001; Oliveira et al. 2009; Porto

et al. 2009). The first step was to create a series of C-matrices

with varying degrees of modularity and overall integration. All

matrices are 40 × 40 in rank and simulate morphological data.

Notice that all these matrices represent biological systems with

low dimensionality; in other such systems, like gene coexpression

databases, for example, dimensionality can easily reach the order

of thousands (e.g., Nowick et al. 2009; Oldham et al. 2006).

We start with uniform C-matrices, with equal eigenvalues, then

move to matrices with two separate modules (A matrices), then

four modules (B), eight modules (C), and finally matrices with

eight modules and two submodules within each main module (D).

In all these matrices, all 40 traits were divided equally among

modules. In each of these modular structures, we also increase

both between and within module correlation, which alters the

influence of the first principal component (PC1) (size) on the

total amount of variation (matrices A through D of types 1, 2, and

3 and two uniform matrices—see Supporting information). Using

these C-matrices, we created 14 multivariate normal distributions

with null mean, and drew from each one populations with 10,000

individuals. These are meant to represent natural populations of

interest.

Next, 1000 bootstrap samples of 50, 100, 200, and 500 in-

dividuals were taken from the populations, representing experi-

ments using different sample sizes. Each of these individual sam-

ples was used to calculate a C-matrix estimate.

EVOLUTION MAY 2012 1 5 0 9
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Figure 2. Eigenvalues for a C3 class matrix (see section Simulation and Bootstrap). Sample eigenvalue estimation mean and coefficient of

variation taken from 1000 bootstrap matrices with 50 individuals taken from a multivariate normal distribution with C3 as the covariance

matrix. Arrows show cutoff points for the minimum (top right) and variance (bottom right) criteria. See text for details.

We are interested in how well these sample C-matrices can

be used to estimate selection gradients. To determine this we gen-

erate a random known selection gradient (βT ), which is used in

Lande’s equation along with the population C-matrix to determine

the observed �z̄. Using this �z̄ and sampled C-matrices, we use

equation (1) to calculate an estimate of the selection gradient (βs).

The similarity between βT and βs is then a measure of the qual-

ity of C-matrix estimation and of its inverse. This procedure is

summarized in Figure 3. We use vector correlation to compare all

vectors in this study. Using random vectors draw from a multivari-

ate normal distribution with 40 elements, we determined that any

vector correlation with absolute value above 0.5 is significant at

P < 0.001. The same sample C-matrices were then submitted to

the extension approach and a number of comparisons were made

to check if controlling noise improves the results. We present be-

low three criteria for selecting the numbers of eigenvalues that

should be retained: an optimal criterion (OC), a variance criterion

(VC), and a minimum criterion.

The OC is the best possible fit between βT and the recon-

structed selection gradient based on the noise-controlled sample

C-matrix (βopt). For every C-matrix sampled from the population,

we determine how many retained eigenvalues give the highest

correlation between these selection gradients. The rationale here

is to have a benchmark against which to compare the impact of

Figure 3. Simulation scheme for testing noise control techniques

in selection reconstruction analysis.
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the extension procedure, since such approach is obviously not

applicable to real world problems where we do not know the true

population C-matrix or the true selection gradient.

We introduce here the VC, in which we calculate the cut-

off estimate described in the background section without any

consideration to true population values. It is entirely based on the

decay of variance of the second derivative of sorted eigenvalues.

The comparison between these reconstructed selection gradients

based on the VC (βvar) with those obtained from the OC will be

useful to benchmark whether we are still able to find a reasonable

cut-off point without any a priori knowledge of the population

C-matrix.

The minimum criterion is the original cut-off estimative of

Twede and Hayden (2004) for the extension method, which takes

the minimum of the second derivative of sorted eigenvalues as the

cut-off point.

We also apply another noise control technique described for

covariance matrices estimation. The shrinkage method is based

on a theorem by Stein (1956) that shows that it is often pos-

sible to improve the ML estimator for the C-matrix of a given

high-dimensionality dataset. The idea is to use a target matrix

and find the linear combination between the ML estimator and

a arbitrary target matrix that best describes the true covariance

structure of the population. A good choice for the target matrix

in our case is a diagonal matrix of variances with null covari-

ances. This particular target only modifies covariances, leaving

variances untouched. Using a positive definite target matrix, this

procedure guarantees a resulting matrix that is always positive

definite and well conditioned. The optimal linear combination

between the target and original matrix, called shrinkage intensity,

is determined analytically as to minimize the mean squared er-

ror of the resulting shrinkage matrix estimate (Ledoit and Wolf

2003). This analytical calculation of shrinkage intensity is very

robust, and a poor choice of target matrix will result in a linear

combination that privileges the original matrix estimated directly

from the dataset. For an ML estimated C-matrix C, the shrinkage

estimate C∗ is given by:

C∗ = αT + (1 − α)C, (4)

where T is the target matrix and α is the shrinkage intensity.

For an extensive description of the method, different shrinkage

targets and how to calculate shrinkage intensity for such targets

see Schafer and Strimmer (2005). The shrinkage method results

were then compared to our cut-off estimative for the extension

method in their efficiency in estimating the “true” C-matrix of the

whole sample.

In all methods, we also measure the amount of variation

explained by the first eigenvalue, average between and within

module correlation, and mean squared correlation for all traits (an

overall measure of integration, see Porto et al. 2009). All these

measures are related to the amount of integration in the system

that in turn is inversely proportional to evolutionary flexibility

(how close to the direction selection is pushing the population is

able to respond or, in other words, the correlation between the

selection gradient and evolutionary response, sensu Marroig et al.

2009). Accordingly, we can study the effects of these modular-

ity/integration measures on selection reconstruction analysis.

To measure the impact of the extension approach over the

correlation distribution in a sample matrix with respect to its

“real” counterpart, we registered differences between estimated

and “real” correlations, before and after applying the extension

method for a single set of A-matrices generated from a sample of

50 individuals, thus illustrating what the extension method does

to correlation estimates within each matrix.

A STUDY CASE—SELECTION RECONSTRUCTION IN

NWMS SKULL EVOLUTION

To illustrate the application of the extension approach to evolu-

tionary biology problems, we carry through a selection recon-

struction analysis on our NWMs skull database. The data col-

lection, measurements, sample sizes, and procedures to obtain

within-population phenotypic covariance matrices are described

in Marroig and Cheverud (2001). All matrices used from now on

were pooled for each node on the tree from within-population

matrices observed in the terminal taxa (genus) using the phylo-

genetic tree of Platyrrhini (Wildman et al. 2009) as described in

Marroig and Cheverud (2005, 2010). Average values for the 16

genera were used along with the phylogeny (Wildman et al. 2009)

to obtain estimates of the direction of evolution (�z̄) based on es-

timates of ancestral data (Marroig and Cheverud 2010). Using the

equation (1), we obtain the net selection gradients. Here, �z̄ is the

difference vector between two nodes (or between a living genus

and its ancestor) and we use the inverse of the phenotypic pooled

within-group covariance matrix (P−1) as a proxy for G−1.

For this study case, our criterion for determining the cut-off

point for the extension noise control was expanded to maintain

the �z̄ calculated using the noise-controlled β as close as possi-

ble to the original �z̄ with respect to its magnitude and direction.

Therefore, the cut-off point was chosen so that the percentile

difference between the norms of both responses was not greater

than 3%, and that their vector correlation stayed in the range of

0.97–1.00. After reconstructing selection gradients, we calculate

their correlations with an isometric size vector to test whether

these β’s represent selection in the direction of Pmax or not.

Also, by calculating the correlations between Pmax and the re-

sponse to selection, we can discern if this response was affected

by the attractor effect of the direction of least genetic resistance

or if the �z̄ is a direct response to its corresponding β. We also

report the correlation between these reconstructed β’s and the

EVOLUTION MAY 2012 1 5 1 1
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corresponding �z̄s (flexibility sensu Marroig et al. 2009), before

and after controlling P for noise, to compare these flexibility

values with those obtained by simulating 6000 random β’s, using

Lande’s equation to calculate �z̄ and creating a distribution of

flexibilities, akin to the approach taken by Marroig and Cheverud

(2010).

Simulating G-Matrices
We are also interested in the impact of noise control techniques in

estimating G-matrices. Therefore, we would like to test if noise

control techniques improve the estimation of G-matrices, com-

paring these estimates with “real” G-matrices before and after

applying noise control techniques. Because “real” G-matrices are

impossible to obtain from actual data, we address this question

via a simulation-based approach.

Since G-matrices represent patterns of covariation between

additive effects of genes over phenotypic traits, we are able to

relate the features of these loci (like the frequencies and av-

erage effects of different alleles within each locus, for exam-

ple) with the genetic variances and covariances of phenotypic

traits (Falconer and Mackay 1996; Lynch and Walsh 1998; Kelly

2009). If these features are known, we can compare the real

G-matrix with its estimate before and after applying noise control

techniques with respect to reconstructing selection gradients.

We simulate three diploid populations, each comprised of

20,000 individuals. Each individual belonging to one of these

populations is initially represented by a variable number of loci

with purely additive effects (800 for the first population, and 1150

for the second) affecting 40 traits. We assume initially that each

locus has two possible alleles and for each individual we draw

two alleles with equal probabilities; genotypic values for the three

possible genotypes are −0.5 and 0.5 for both homozygotes, and

zero for the heterozygote, as there is no dominance between each

pair of alleles.

The 800 genes in the first population affect the 40 traits

in a modular way, as they are divided into eight groups of 100

genes that affect groups of five traits. Each gene affects two traits

within its given module; hence, the resulting G-matrix for this

population has zero covariances between traits in different mod-

ules. The two other populations have genetic architectures that are

modified from this basic framework. The second population has

350 additional genes that randomly affect two traits in each of the

five modules simultaneously, so that its G-matrix had an average

positive covariance between traits in different modules; therefore,

this second G-matrix has a size factor (Bookstein et al. 1985)

integrating all its modules. The third population has 800 genes

controlling its traits, as the first, but on each module, two traits

are affected by the same genes, so that their genetic correlation is

one; hence, the resulting G-matrix has five dimensions with zero

variance and does not have full rank.

After sampling all individuals belonging to both populations,

we calculate average effects for each allele and breeding values

for each individual (Falconer and Mackay 1996). To create phe-

notypes from these breeding values, we assign each trait to a

score of heritability, randomly sampled from a F-distribution with

100 degrees of freedom for both numerator and denominator, cen-

tered to mean 0.4; we use this distribution here just to ensure that

our random sample of heritabilities is nonnegative and has a mean

value compatible with those observed in morphological traits for

endotherms (Mousseau and Roff 1987). Starting with these heri-

tabilities, we calculate environmental variances for traits and use

these variances to generate independent Gaussian noise to the

breeding values of all individuals. Therefore, environmental ef-

fects for all traits are uncorrelated, so that the P- and G-matrices

for each population have strong similarities in their eigenstruc-

ture, as empirically found for morphological traits in mammals

(see Cheverud 1995, 1996; Porto et al. 2009).

The individuals belonging to each population are paired ran-

domly in 10,000 couples. These couples are used to produce a

F1 generation, by sampling one of the two alleles for all loci in-

dependently, without linkage disequilibrium; genetic covariances

between characters therefore arise only from pleiotropy. Each

couple is used to produce two siblings, and the same procedure

used to generate phenotypes in the parental generation was used

in F1. Hence, each population comprised 10,000 families, each

composed of sire, dam, and two full-siblings.

Because genealogical data for all populations are known, we

are able to estimate G-matrices with restricted maximum like-

lihood (REML) methods (Shaw 1987, 1991; Lynch and Walsh

1998) by randomly sampling subsets of families within each pop-

ulation. Starting with a subset composed of 100 families, we

increased sample size by 100 for each subsequent sample, until

reaching 1000 families. For each of these sample sizes, 100 G-

matrices were calculated from resampling the total set of families.

After obtaining estimates for the G-matrix from phenotypic

values, we are able to use these estimates to reconstruct selec-

tion gradients, applying 1000 random β’s over the population

G-matrix, and then using the �z̄s generated to reconstruct the

original βs with the estimated G-matrices. Therefore, we test the

quality of the reconstructions with the same simulation scheme

used on the theoretical matrices in the previous section (Fig. 3).

The shrinkage approach cannot be used in the REML estimated

matrices because it demands actual measurements being cor-

related (in this case, estimated breeding values of each indi-

vidual, which are not calculated in a simple REML estima-

tion), so we restrict ourselves to the extension approach. All

codes, matrices, software, and simulated data can be obtained

at http://dreyfus.ib.usp.br/gmarroig/extension/
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Figure 4. Correlation between true and estimated β’s for the matrices type C1, C2, and C3. See Supporting information and text for

detailed description of the matrices.

Results
A typical plot of observed eigenvalues of the C-matrix obtained

for a population created from a uniform C-matrix is presented

in Figure 1A, for different sample sizes. In the original matrix,

eigenvalues are all equal. This sort of negative exponential eigen-

value plot is characteristic of morphological systems (Wagner

1984; Pavlicev et al. 2009a). In Figure 1B, notice the large 95%

confidence interval and observed range in correlation estimates

(which should all be zero) in the original matrices compared to

those where noise was controlled using the extended procedure.

As expected by sampling theory, larger sample sizes are associ-

ated with smaller error (noise) in the estimates, but in all sample

sizes the extended controlled estimates are substantially improved

in comparison to the original ones.

Figure 4 shows the correlation distributions between true β

values and those estimated directly or using the various noise

control methods. We show results for a single type of matrix (C1,

C2, and C3) and for different sample sizes, but the same pattern

was found for other matrix types (see Supporting information).

Usually, both extension (VC) and shrinkage estimates of β are

dramatically improved in regard to noise estimates.

Figure 5 shows how close to the best possible cut-off point

(OC) noise control methods get in terms of the correlation be-

tween the estimated β and βT . Our VC is the one with the least

difference to the OC (more points near zero, which indicate agree-

ment with the OC cut-off point). The shrinkage method usu-

ally performs slightly worse, even though in a few samples this

method is slightly better than the extended method using the OC in
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Figure 5. Comparison of each method with the OC. More points near zero indicate complete agreement in the correlation with using

the OC and each method.

approaching βT . In practice, both methods should be equivalent

in their ability to improve our estimations of C-matrices. The

original cut-off point of Twede and Hayden (2004) is inferior to

other methods, estimating β’s that are significantly different from

the OC estimates in many cases. The original estimation without

any noise control technique is also shown, and it can clearly be

observed that this estimate is poor when compared to βT .

Figures 6 and 7 show how size variation (integration) and

modularity affects the reconstructions. Within each matrix type

(A, B, C, and D), numbers 1, 2, and 3 indicate an increasing

amount of variation associated with the PC1. In general, matrices

1 do not have size variation with off-module correlations equal

to zero, whereas matrices 2 and 3 do have variation in size (see

Supporting information). Conversely, the number of modules is

higher in matrices D (eight modules with two modules nested

within each one to create a substructure—8 × 2 = 16 modules),

followed by matrices C (eight modules), B (four modules), and

A (only two modules). Therefore, within each matrix number (1,

2, and 3), matrices A > B > C > D have a decreasing amount

of variation associated with their PC1 (Fig. 6). The order of the

matrices in terms of increasing integration is D1 > C1 > B1 >

A1 > D2 > C2 > D3 > B2 > A2 > C3 > B3 > A3 (see

Fig. 6). In our matrices, where the total amount of variation is

similar, more variation in PC1 means that the last eigenvalues are

even smaller, and thus even more difficult to estimate (Fig. 2)

which in turn affects our ability to obtain a reasonable inverse.

Accordingly, matrices with high integration, low modularity, and

low flexibility (sensu Marroig et al. 2009) lead to estimates of

Figure 6. Correlation between true and estimated β’s without

controlling for noise with n = 500 as a function of total integration.
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β without noise control that are quite poor (see Table S1). Even

controlling for noise, there is an inverse relationship between mag-

nitude of integration and efficiency of the selection reconstruction

(Fig. 6).

Regarding the effect of the extension method in estimating

correlation values in each matrix, Figure 8 shows the distribution

of deviations from population values for a selected set of three A-

matrices. We can observe that the difference between population

and estimated correlations increases in absolute value when we

apply the extension method, especially in the A3-matrix, which

has a more dominant size factor (higher correlations). However,

the same figure also shows that overall matrix structure does not

change, so that applying the extension method does not affect

the observation of modularity present in the population matrix. In

fact, matrix structure is less patchy in those matrices controlled

for noise because the general effect of noise control methods is

to reduce correlation values and thus control for spurious corre-

lations.

G-MATRIX

None of our REML G-matrix estimates for the first (size-free)

population are positive-definite (which occurs when all eigenval-

ues of a given square matrix are strictly positive) even at our max-

imum sample size of 1000 families. The occurrence of negative

eigenvalues was common in our REML estimated matrices. For

the third population, which is not positive-definite by definition,

even some phenotypic matrices have negative eigenvalues. How-

ever, in the second population, affected by a size factor, 3% of our

estimated G-matrices at sample size 700 are positive-definite; this

percentage increases with larger samples so that, at our maximum

sample size, 81% of these estimates are positive-definite.

Regarding selection reconstruction, raw estimates of G for

both populations yielded poor estimates of β with respect to the

correlation between those β’s and the ones applied over the pop-

ulation G-matrix. In the size-free population (Fig. 9), these es-

timates are always poor, regardless of sample size; however, in

the population with size effect, there is a slight improvement of

reconstructions with respect to sample size (Fig. 10). After apply-

ing either optimal (OC) or variance (VC) criteria, estimates of G
for both populations improve the reconstructed β’s, so that their

correlation with the corresponding βT has an asymptotic growth

toward a maximum possible value of correlation with respect to

sample size, as it can be observed in Figures 9 and 10, regarding

the size-free and size-factor populations, respectively. Further-

more, the variance of the reconstructed β correlations is much

lower in the noise-controlled matrices (VC and OC) compared to

the raw matrices without any form of noise control.

With respect to the phenotypic counterparts to estimates of G,

these P-matrices are much better behaved. Even without any noise

control and at low sample sizes, P-matrices yield β reconstructions

close to the true β’s considered. However, it appears that there is an

upper limit to correlations between estimated and true β’s (around

0.9 for the size population and 0.75 for the size-free population).

It is also noteworthy that, with respect to the size population,

applying the extension method over phenotypic matrices slightly

decreases the average correlation between real and estimated β’s.

The P-matrices in these simulations are so well estimated that the

VC is unable to produce an improvement in β estimation, whereas

the OC produces marginal improvement. This level of precision

is of course highly unlikely in real studies, and the difference

in β estimation is so slight that it would probably go unnoticed.

Table S2 summarizes all results obtained for this section.

Results for the third population are presented in Supporting

information (Fig. 2); however, it is noteworthy that such results

are by no means different for those presented for the size-free

population.

Study Case
The noise and noise-controlled estimates of reconstructed β’s for

our study case are presented in Table S3. Table I presents re-

sults regarding analyses comparing the directions of β’s, �zs,

and Pmax. These results show that most responses to selection are

significantly aligned with Pmax, in concordance with Marroig and

Cheverud (2005). Also, in a dozen cases across the phylogeny of

NWM, the direction of β after controlling for noise is also aligned

with the direction of size. The bulk of such cases are concentrated

on the Callithrinae clade (Fig. 11).

Regarding estimates for flexibility before and after applying

the VC (Table I), the original β’s (with noise) presents a range of

values for flexibility between 0.11 and 0.45, usually outside the

range of expected flexibilities for these matrices, obtained from

the simulated distribution with known selection gradients; only

three values of flexibility calculated with β’s without noise control

along the phylogeny fall within the 95% confidence interval of the

simulated distribution. When we use gradients reconstructed with

noise control, the range of observed flexibility values becomes

0.45–0.76, which is compatible with the distribution of simulated

flexibilities; all observed values along the phylogeny fall either

within the 95 percentile empirical distribution of simulated values

or slightly above.

Discussion
The difficulty in estimating eigenvalues of a uniform matrix, as

shown in Figure 1, is a clear sign that noise control methods are

a necessity when working with C-matrices. In fact, Figure 1 il-

lustrates that with limited sample sizes, in a system where all

traits are independent and equally variable, noise alone will lead
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Figure 7. Correlation between true and estimated β’s using the OC. Here, we see how having a first principal component (size) accounting

for most of the variability in the sample affects the reconstruction analysis. The larger the first PC, the harder it is to obtain a reasonable

reconstruction of the selection gradient.

to a negative exponential distribution of eigenvalues, a fact well

known (Anderson 2003; Meyer and Kirkpatrick 2008). Further-

more, false-positive correlation values with moderate to strong

intensity tend to appear, an effect which is more pronounced in

small sample sizes, as can be seen in Figure 1B.

Figures 4 and 5 illustrate the effect of noise and compares the

shrinkage and extended methods, showing the influence of sam-

ple size on matrix estimation and consequently on selection re-

construction analyses. All methods perform better than C-matrix

estimates without noise control by our criterion of how closely the

reconstructed β is aligned to the true gradient. Although the effects

of noise naturally diminish with increasing sample sizes, all noise

control methods applied here perform better than the simple sam-

ple estimates. In fact, with sample sizes around 50 individuals, β’s

reconstructed without controlling for noise are no more similar

to the true selection gradient than expected by chance alone (see

Table S1). After controlling for noise, however, selection gradient

estimates are not only substantially improved but also present high

and statistically significant similarity to the true gradients. Yet,

it should be noted that the VC developed here for the extended

approach generally performs better than other methods, as it can

be seen in Figure 5. The difference between the criteria suggested

by Hayden and Twede (2002) and our VC can be observed in

Figure 2. In general, the VC will select a smaller number of

eigenvalues to be retained, whereas the original (Hayden and

Twede 2002) based on the minimum second derivative of the
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Figure 8. The effect of the extension method over correlation values. In the first line of graphics, we show the distribution of correlation

values for A1-, A2-, and A3-matrices before and after applying the extension method, with correlations between and within each module

set apart. Lines on each graph indicate the true correlation values for each population; dotted lines indicate extramodular correlations

and dashed lines indicate the intramodular ones. In the three subsequent lines, we show graphic representations of these matrices:

the population matrix, the estimated matrix without noise control, and the estimated matrix after applying the extension method. The

grayscale used in these matrices represent the maximum correlation level as white and the minimum as black, with intermediate values

as shades of gray.
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Figure 9. Reconstruction of selection gradients using the estimated G- and P-matrices for the size-free population, with and without

noise controlling methods. Correlations between true and estimated β’s using both optimal (OC) and variance (VC) criteria.

eigenvalues will usually identify the noise floor at a later point

over the ordered eigenvalues.

Matrices with enhanced modularity (larger number of mod-

ules and less integration) are less affected by noise and have both

a higher similarity and a smaller variance in the correlations be-

tween the reconstructed β’s and true gradients (Fig. 6). We can see

the effect of modularity and integration in Figures 6 and 7, where

increasing eigenvalue variance, either by raising between module

correlations (thus increasing the first eigenvalue, matrices type 1,

2, and 3, respectively, from lower to higher) or by having fewer

relevant directions in the morphospace (with increasing degree

of modularity, matrices type A, B, C, and D) greatly affects the

reconstruction analysis. In general, matrices that are less modular

and have a strong integration (a substantial portion of the variabil-

ity is concentrated on the first eigenvalue) will be more affected

by noise than those matrices where dimensionality (number of

modules) is higher and overall integration is lower (Figs. 4, 6,

and 7).

The connection between variational modularity and the diffi-

culty in estimating selection gradients can be interpreted by noting

that in less modular highly integrated systems a larger portion of

the trait variation is shared with other traits and very little of the

trait variation is not shared (common and trait-specific variation—

see McGuigan and Blows 2010) making it harder to detect any

signal in that specific part of the trait variation against noise.

We show here that this type of noise can be readily identified

with small eigenvalues of the C-matrix, and modularity aggra-

vates this problem (Figs. 2 and 6). This occurs because some
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Figure 10. Reconstruction of selection gradients using the estimated G- and P-matrices for the size-factor population, with and without

noise controlling methods. Correlations between true and estimated β’s using both optimal (OC) and variance (VC) criteria.

directions on the morphological space contain less variation, due

to the high correlation of traits within modules and consequently

the concentration of the total variation in few dimensions. Thus,

the last eigenvalues are correspondingly smaller and carry only a

tiny fraction of the total variation in the system (Pavlicev et al.

2009a). Because smallest quantities had relatively more error in

its estimates than larger quantities (just because they are small

and approach the error inherent to both observer and measuring

device), it is easy to see why the last eigenvalues have a low

signal-to-noise ratio. Just to give an idea of the noise control ef-

fect on the millimeter scale of real measures taken from a sample

of marmosets skulls, we compared the observed values in a sam-

ple of 502 skulls with the values after controlling for the noise in

the C-matrix (adjusting eigenvalues via extended approach and

reprojecting the data back to the original basis). The average dif-

ference in millimeter between observed data and noise-controlled

data is around 0.12 mm that is well within observer plus measur-

ing device (0.05-mm accuracy of the three-dimensional digitizer)

error.

When we consider the effect of extension on the individ-

ual correlation estimates (Fig. 8), it is clear that by controlling

noise we are increasing to some extent the variation in the system

(the small eigenvalues are increased), and so estimated correla-

tion values tend to become smaller than true values, an effect

more pronounced in size-dominated matrices. It is noteworthy,

however, that this bias represents a small one when compared to

the absolute value of correlations in these matrices, within and be-

tween modules. In the example provided in Figure 8, intramodular

correlations in the estimated A3-matrix reduce to an average of

0.6 when the extension method is applied. This is a small change
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Figure 11. Association between reconstructed β’s and the direction of size across the phylogeny of Platyrrhini monkeys. The strength

of correlation between these vectors is indicated by the color scale and by circles and squares, whether such correlation is negative or

positive, respectively.

when compared to the real value of 0.8, and the reduced value is

still statistically different from zero at a sample size of 50 individ-

uals. At same time, small spurious correlations that reflect noise

in the system are controlled by extension and consequently the

structure of the matrix is a much better representation of the true

pattern structure than the raw matrix (see Fig. 8, especially the left

panel, matrix A1 where off-modules correlation should be zero).

This illustrates the effects of the extension approach over the

eigenvalue distribution and its impacts on C-matrix structure. As

we extend the lower eigenvalues, we reduce the variance of their

distribution, effectively controlling for its bias, while introducing

a small bias in the eigenvalue mean. Our argument here is that

this bias in eigenvalue mean does not affect C-matrix structure as

much as a bias in eigenvalue variance, as shown above.

Regarding results with simulated G-matrices for the three

populations, it is clear that the extension approach improves dra-

matically estimation of selection gradients, regardless of sample

size. Often, estimated G-matrices will have negative eigenvalues,

representing linear combinations of traits that have negative ad-

ditive genetic variances (Hill and Thompson 1978); hence, these

matrices cannot be considered to be true C-matrices. These nega-

tive eigenvalues appear in estimated G-matrices due to impossible

values of estimated pairwise correlations, either because they fall

outside the range of −1 to 1, or because there are combinations of

partial correlations for certain subsets of traits that are impossible

in terms of variance partitioning. Therefore, G-matrices estimated

through separate REML models for each of its variances and co-

variances need to be corrected for bias in its eigenvalues; our

argument here is that the extension method is the best correction

because it preserves modularity structure in any C-matrix esti-

mate, be it phenotypic or genetic; the extension method is also a

simple method in terms of implementation when compared to the

shrinkage method.

In our simulated population, virtually all G-matrix estimates

in the size-free population have negative eigenvalues where there

are positive eigenvalues in the population G-matrix. Because

the eigenvalue distribution of a G-matrix estimate is used for

estimating the dimensionality of the population G-matrix (e.g.,

Mezey and Houle 2005; Hine and Blows 2006; Pavlicev et al.

2009b), we suggest that one should proceed with caution when

interpreting negative eigenvalues as dimensions without genetic

variation (see also Pavlicev et al. 2009b).
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Table 1. Reconstruction of noise-controlled β’s across the Platyrrhini phylogeny and their relationship with �z̄s and Pmax. Bold font

indicate vector correlation significantly different (P < 0.001) from a random distribution.

Flexibility

Simulation

PC’s �z× Lower Upper
Node retained % dif. �z_observed β × size Constraints Noise Control bound Average bound SD

9-5 7 1.554 0.993 −0.589 −0.901 0.257 0.718 0.374 0.511 0.665 0.075
15-13 12 0.808 0.997 −0.594 −0.934 0.220 0.634 0.416 0.547 0.684 0.069
13-11 8 1.266 0.994 −0.701 −0.964 0.283 0.760 0.415 0.548 0.683 0.070
11-9 8 1.533 0.993 −0.690 −0.921 0.347 0.764 0.439 0.590 0.732 0.078
6-3 10 1.580 0.995 0.125 0.729 0.249 0.604 0.374 0.511 0.665 0.075
5-3 10 2.845 0.988 −0.409 −0.865 0.279 0.593 0.374 0.511 0.665 0.075
19-2 24 2.990 0.992 0.110 0.548 0.448 0.547 0.372 0.527 0.691 0.084
19-3 9 1.162 0.995 −0.474 −0.927 0.278 0.613 0.366 0.520 0.685 0.082
18-19 9 1.429 0.993 0.453 0.904 0.273 0.612 0.366 0.520 0.685 0.082
20-18 10 1.768 0.992 0.375 0.739 0.320 0.708 0.343 0.505 0.685 0.091
21-20 18 2.522 0.991 0.180 0.795 0.296 0.501 0.387 0.512 0.659 0.070
26-2 24 2.990 0.992 −0.110 −0.557 0.448 0.547 0.372 0.527 0.691 0.084
28-27 18 1.213 0.994 0.258 0.698 0.281 0.627 0.383 0.546 0.703 0.086
27-26 13 2.895 0.984 0.275 0.787 0.315 0.618 0.384 0.549 0.710 0.088
Pithecia-27 18 2.771 0.990 −0.212 −0.284 0.258 0.759 0.383 0.546 0.703 0.086
Callicebus-26 8 2.269 0.991 −0.512 −0.843 0.298 0.703 0.384 0.549 0.710 0.088
Ateles-20 17 2.865 0.990 0.200 0.640 0.363 0.659 0.387 0.512 0.659 0.070
Alouatta-18 16 1.530 0.995 −0.046 0.727 0.370 0.592 0.343 0.505 0.685 0.091
Aotus-5 15 2.563 0.991 −0.071 −0.736 0.274 0.580 0.374 0.511 0.665 0.075
Saguinus-9 8 3.000 0.987 −0.572 −0.868 0.331 0.750 0.439 0.590 0.732 0.078
Leontopithecus-11 21 2.485 0.991 −0.117 0.719 0.426 0.607 0.415 0.548 0.683 0.070
Callimico-13 24 2.969 0.988 0.032 −0.478 0.327 0.566 0.416 0.547 0.684 0.069
Callithrix-15 12 1.293 0.995 −0.479 −0.886 0.225 0.661 0.422 0.553 0.690 0.069
Cebuella-15 12 0.783 0.997 −0.623 −0.925 0.245 0.469 0.422 0.553 0.690 0.069
Cebus-6 5 2.077 0.990 0.507 0.864 0.110 0.738 0.302 0.427 0.577 0.071
Saimiri-6 12 1.708 0.994 −0.197 −0.844 0.203 0.480 0.302 0.427 0.577 0.071
Brachyteles-21 18 2.866 0.988 0.213 0.744 0.219 0.570 0.405 0.548 0.702 0.077
Lagothrix-21 18 2.774 0.988 −0.053 0.263 0.226 0.680 0.405 0.548 0.702 0.077
Cacajao-28 13 2.504 0.989 0.333 0.746 0.276 0.643 0.386 0.542 0.695 0.081
Chiropotes-28 24 2.961 0.988 −0.072 −0.017 0.380 0.690 0.386 0.542 0.695 0.081

In the size-factor population, some of the G-matrix estimates

at higher sample sizes become free of negative eigenvalues, which

makes these estimates more reliable even without any correction

for their eigenvalue distribution. This is by no means a property of

biological systems that have size variation; it is only a byproduct

of our simulation design. Because heritabilities are fixed, genetic

variation in size increases the overall genetic and phenotypic vari-

ances in the system, reducing environmental variances. Therefore,

estimates for genetic variances and covariances are easier to ob-

tain in the size-factor population, simply because they are higher

than those in the size-free population (Young et al. 2010).

A corollary of our simulations is that, when environmental

effects are low and normally distributed and interactions between

genetic and environmental effects are nonexistent, as it is the case

here, P-matrices produce better estimates of selection gradients

than G-matrices without using any noise control techniques, as

can be seen in the leftmost panels of Figures 9 and 10. This

is consistent with Cheverud’s conjecture (Cheverud 1988; Roff

1995; Reusch and Blanckenhorn 1998; Waitt and Levin 1998;

Porto et al. 2009; Dochtermann 2011), which suggests that P-

matrices are good approximations of their genetic counterparts for

evolutionary analyses, given that environmental effects are low or

have similar structure to G. This result reflects the fact that, under

the conditions of our simulation, P-matrices are estimated with

less noise due to their large sample sizes than their corresponding

G-matrices due to the familial structure (Roff 1995).

In all the examples based on simulations, sample sizes con-

sidered as adequate for studies based on museum or laboratory
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collections (n = 100 or n = 200) still present a bias, with the

first eigenvalues being overestimated and the last ones underes-

timated. Even when working with matrices with moderate rank,

only huge, realistically unobtainable samples lead to ML esti-

mates with reasonable error in eigenvalues. This is an important

message for researchers about an effect that can be exacerbated

in situations where the number of estimated parameters is larger

than or close to sampled specimens, as is common in geometric

morphometrics nowadays. The situation is even more dramatic in

gene coexpression studies where thousands of dimensions (genes)

might be correlated with only a few individuals. This has already

been noticed in other fields in which the error in estimation is more

evident, such as genomics or even economics, where covariance

matrices that are not positive definite are obtained directly from

data, and thus easily perceived as in need of improvement (Ledoit

and Wolf 2003; Schafer and Strimmer 2005; see also Efron 1982

for a discussion on the limitations of ML estimators). Although

the problem has been noticed, noise control is not yet a common

practice in genomic studies (e.g., Oldham et al. 2006; Nowick et

al. 2009). Both shrinkage and extended approaches can be used in

estimates of variance/covariance or correlation as a way of con-

trolling noise and improving representations of population pat-

terns. We illustrate this in the context of selection reconstruction

analyses exploring both modularity and sampling in signal-to-

noise ratio in simulated datasets as well as estimating selection

gradients in NWMs skull evolution. We shall now consider these

results.

Previously, Marroig and Cheverud (2004, 2005) showed that

skull evolution of NWMs was predominantly under natural selec-

tion and that the adaptive radiation of this group was dominated by

size changes (and allometrically correlated shape changes) asso-

ciated with dietary differences. However, net selection gradients

reconstructed were not similar to size, suggesting that size evo-

lution was a byproduct of the attractor effect of the line of least

resistance and its long-term conservation (Marroig and Cheverud

2005). Yet, net selection gradients reconstructed previously

(Fig. 4 in Marroig and Cheverud 2005 and Table S3) present vector

correlations (between 0 and 0.44), with the observed evolutionary

responses (�z̄observed) outside the range normally observed in our

simulation (0.4–0.85) of evolutionary responses produced by ran-

dom selection vectors (Table 1, see Marroig and Cheverud 2010;

Marroig et al. 2009), suggesting that they were poor estimates

of the true net-β due to noise in those C-matrices. Furthermore,

Marroig and Cheverud (2010) developed a method based on ran-

dom selection simulations that allows to test whether a particular

observed case of evolutionary change along a size dimension can

be explained by the line of least resistance attractor effect. In the

NWMs skull evolution study, they show that at least in a third of

the total cases the observed size/allometry evolutionary change

probably result from selection to some extent aligned with size.

We confirm this finding here by removing noise from matrices

estimates prior to reconstructing net selection gradients (Table 1).

Five of the six cases identified by Marroig and Cheverud (2010)

as being under size selection (Callicebus, Cebus, Saguinus, Cal-

lithrix, and Cebuella) also present here a significant correlation

of the net-β with a size vector (Table 1 and Fig. 11). Furthermore,

there is a clear signal of size selection in branches corresponding

to marmosets and tamarins where a long-term trend for reducing

overall body size is observed (Fig. 11).

Conclusion
It is important that we realize that the consequences of not con-

trolling noise from our estimated matrices would not only impact

selection reconstruction but any statistical inference based on ma-

trix estimates and, particularly, in a very pronounced way, inverted

matrices. Thus, although we illustrate the problem here within the

context of selection reconstruction analysis, the problem (noise)

and solutions to control it (extension and shrinkage) have far

broader implications. Both traditional Euclidean and Geometric

morphometrics make extensive use of covariance matrices and

invert them routinely. In ecology, genomics, and genetics, many

procedures involve matrix inversion. In these contexts, using ML

estimates lead to results that may be extremely different from

reality. For example, in phylogeography and phylogenetic anal-

yses, we can think about historical relationships among units

(whether populations or species) in terms of a covariance matrix

of ancestry (Cavalli-Sforza and Piazza 1975). These matrices will

be estimated with some degree of noise and the problem so far

has been largely ignored. Noise control methods discussed here

can be useful in these applications and we plan to explore that

in a subsequent contribution. In evolutionary ecology, methods

dealing with demography and population growth are usually rep-

resented in form of covariance or correlation matrices (Caswell,

2001, 2008) and the same problem will be present in such es-

timates. In fact, given the central importance of correlation and

variance/covariance matrices in quantitative biology, we suggest

that researchers should incorporate noise control techniques in

matrix estimation as a routine procedure and to fully incorporate

the extension approach in the housekeeping statistical toolkit.
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