
BRIEF COMMUNICATION

doi:10.1111/evo.13864

Measuring the magnitude of morphological
integration: The effect of differences in
morphometric representations and the
inclusion of size
Fabio A. Machado,1,2,3,4 Alex Hubbe,5 Diogo Melo,6 Arthur Porto,7 and Gabriel Marroig6

1Department of Biology, University of Massachusetts, Boston, Massachusetts 02125
2División Mastozoologı́a, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia,” Av. Ángel Gallardo 470

(C1405DJR) Buenos Aires, Argentina
3Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Buenos Aires, Argentina

4E-mail: macfabio@gmail.com
5Departamento de Oceanografia, Instituto de Geociências, Universidade Federal da Bahia R. Barão de Jeremoabo, S/N -

Ondina Salvador, Bahia 40170-110, Brazil
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The magnitude of morphological integration is a major aspect of multivariate evolution, providing a simple measure of the intensity

of association between morphological traits. Studies concerned with morphological integration usually translate phenotypes into

morphometric representations to quantify how different morphological elements covary. Geometric and classic morphometric

representations translate biological form in different ways, raising the question if magnitudes of morphological integration

estimates obtained from different morphometric representations are compatible. Here we sought to answer this question using

the relative eigenvalue variance of the covariance matrix obtained for both geometric and classical representations of empirical

and simulated datasets. We quantified the magnitude of morphological integration for both shape and form and compared results

between representations. Furthermore, we compared integration values between shape and form to evaluate the effect of the

inclusion or not of size on the quantification of the magnitude of morphological integration. Results show that the choice of

morphological representation has significant impact on the integration magnitude estimate, either for shape or form. Despite

this, ordination of the integration values within representations is relatively the same, allowing for similar conclusions to be

reached using different methods. However, the inclusion of size in the dataset significantly changes the estimates of magnitude

of morphological integration, hindering the comparison of this statistic obtained from different spaces. Morphometricians should

be aware of these differences and must consider how biological hypothesis translate into predictions about integration in each

particular choice of representation.
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Morphological integration describes the association between

continuous morphological traits and is a key component in

understanding multivariate evolution (Lande 1979). We expect

functionally and/or developmentally related traits to be more

associated among themselves than with others and, consequently,

to evolve in a coordinated fashion (Riedl 1978; Cheverud

1984). A fundamental aspect of morphological integration is the

magnitude of morphological integration (sensu Olson and Miller

1958), which measures the overall intensity of the association

between traits. A high magnitude of morphological integration

means that the available variation is restricted to relatively few

dimensions in phenotypic space. In these cases, evolutionary

change will be strongly influenced by the interaction between

selection and available variation, and we expect evolutionary

change to proceed preferentially along these few dimensions in

which variation is available (Felsenstein 1988; Goswami et al.

2014; Melo et al. 2016; Felice et al. 2018, but see Schluter 1996).

Conversely, lower magnitudes of morphological integration

might indicate relative independence between the traits, allowing

different aspects of the phenotype to evolve without interference

imposed by other parts of the organism. Thus, populations with

similar covariation patterns but with different magnitudes of

morphological integration can present different evolutionary

responses when subjected to the same selective pressure (Lande

1979; Hansen and Houle 2008; Pavlicev et al. 2009).

In the last few decades, with the advent of modern morpho-

metric techniques, several authors have measured the magnitude

of morphological integration in multivariate phenotypes using ge-

ometric morphometrics (GM). At the same time, morphometric

studies based on classic linear measures, such as interlandmark

distances (ILDs), are still popular, making up a significant por-

tion of all papers published on the topic (Esteve-Altava 2017).

Using different morphometric representations of the same phe-

notype goes beyond a mere stylistic choice because using differ-

ent representation affects how biological processes are accounted

for. Take size, for example. GM representations usually involve

a size-scaling procedure, which leads many researchers to put

aside isometric variation in the investigation of morphological

integration, focusing on the morphological integration in shape

alone (e.g., Jamniczky and Hallgrı́msson 2009; Goswami et al.

2015; Curth et al. 2017; Randau et al. 2019). ILD analyses, in

turn, measure traits on a ratio scale (sensu Houle et al. 2011),

which leads to isometric size variation being embedded in the

variation of the traits, thus leading to the joint evaluation of the

overall form (size plus shape) of biological structures (e.g., Meiri

et al. 2005; Young et al. 2010; Haber 2015). Furthermore, differ-

ent morphometric representations can vary in how they quantify

shape changes, which can lead to incompatible interpretations

regarding magnitude of morphological integration. For example,

applying purely homoscedastic (and noncorrelated) error on land-

mark data can lead to nonzero correlations among ILD data drawn

from the same configurations (Rohlf 2000). Conversely, the appli-

cation of affine, global deformations on landmark configurations

will not necessarily lead to equally coordinated changes on ILD

variables (Mitteroecker and Bookstein 2007). Nevertheless, if we

expect to make general statements about the evolutionary proper-

ties of integrated structures, we need to understand how measures

of the magnitude of morphological integration might differ be-

tween these popular approaches and if and when we can directly

compare them.

Here, we investigate if measures of magnitudes of morpho-

logical integration obtained using different morphometric repre-

sentations can be directly compared. We approach this objective

in two ways. First, using simulations we alter a fixed GM co-

variance matrix to produce matrices with different magnitudes

of morphological integration. From these altered covariance ma-

trices, we sampled sets of shapes and sizes and calculated the

magnitude of morphological integration for both GM and a set of

linear distances. Second, we validate these comparisons by eval-

uating magnitudes of morphological integration on the skull of a

diverse group of carnivores.

Material and Methods
SAMPLE AND MORPHOMETRICS

Morphometric data were obtained from 3440 skulls of adult spec-

imens from 67 species of Carnivora from the Caniformes subor-

der, which comprises very distinct forms such as wolf (Canidae),

walrus (Odobenidae), bear (Ursidae), badger (Mustelidae), and

raccoon (Procyonidae). In addition to morphological variation,

the family Canidae was recently found to have a diverging pattern

of morphological integration when compared to other carnivoran

families (Machado et al. 2018). Therefore, this sample comprises

not only considerable shape disparity but also differences in pat-

terns of association among cranial structures. For each specimen,

a set of 32 landmarks (8 mid-line and 12 symmetric) was measured

by the first author using a Microscribe MLX system (Immersion

Corporation, San Jose, CA). To produce GM shape variables the

samples were subjected to a generalized Procrustes alignment

(GPA, Rohlf and Slice 1990). Because GPA scales configurations

to have the same size, data were evaluated both with and without

size by removing or including the logarithm of the centroid size

as an additional variable (Mitteroecker et al. 2004).

For the ILD analysis, we obtained a set of 35 linear ILDs.

These distances have been used on a large set of evolutionary stud-

ies (e.g., Marroig and Cheverud 2004; Assis et al. 2016; Hubbe

et al. 2016; Porto et al. 2016; Machado et al. 2018), and are

particularly interesting because not only they measure specific lo-

calized dimensions of the skull bones and structures (Pearson and

Davin 1924), but also because the covariance matrix obtained on
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phenotypic data alone has been shown to be an accurate approx-

imation of genetic patterns of covariation among the same traits

(Garcia et al. 2014; Porto et al. 2015; Penna et al. 2017). We

also calculated the magnitude of integration values using an Eu-

clidean distance matrix approach (EDMA) in which all possible

ILDs are calculated. The relationship between integration mea-

sures obtained for 35 ILDs and EDMA was slightly nonlinear and

highly correlated (Spearman rank order correlation, rs = 0.965).

As the use of both ILD datasets provide the same general pat-

terns, we focus on the results of 35 ILDs, henceforth called ILD

for simplicity.

Following the analysis of the GM dataset, ILDs were an-

alyzed both with and without the influence of size. To control

the effect of size, we obtained the distances on the centroid-

scaled configurations produced by GPA. This is equivalent to

using Mosimann’s shape ratios (Mosimann 1970), where each

variable (ILD) is divided by a size factor (centroid size). Neither

the GM nor ILD “size-corrected” data are free of shape changes

associated with size (i.e., allometry). They are merely scaled to

have a common size, thus reflecting variation on allometric and

nonallometric shape changes. Henceforth, the analysis without

isometric size will be referred to as “Shape” and the ones with

isometric size as “Form.”

To evaluate if different morphometric methods contain the

same information of the biological variation on the sample, we

performed a Procrustes correlation test (Peres-Neto and Jack-

son 2001). This test evaluates the distribution of observations

on two multivariate spaces by applying the Procrustes transfor-

mations (translation, scale, and rotation) to reduce the residual

sum of squares between the same observations on both spaces. A

correlation-like statistic can be obtained as the square root of 1

minus the residual sum of squares, with values closer to 1 repre-

senting a closer match between spaces. Tests were performed for

each species, evaluating the empirical distribution of values on

the first 35 principal components of each sample (Peres-Neto and

Jackson 2001). Average correlations were 0.939 (SD = 0.014) for

Form and a 0.904 (SD = 0.012) for Shape, never reaching val-

ues lower than 0.878 for any comparison. These high correlations

suggest that both ILD and GM are quantifying the same general

patterns of morphological variation in our sample.

Covariance matrices were obtained for each species individ-

ually and for the full sample. Both species matrices and the full

sample matrix were calculated after controlling for intraspecific

sources of variation. For individual species, these sources of nui-

sance variation were subspecies and sex. For the full sample, in

addition to subspecies and sex, species differences were also con-

trolled for. This control procedure was done by fitting a linear

model on the data using the nuisance variables as fixed effects,

and using the residuals from these regressions to produce pooled

within-group phenotypic covariance matrices (PW ). These regres-

sions were done using the landmark and log-centroid size data.

After the regression, residuals were added to the average shape

and size. To obtain configurations on the original scale, each re-

sulting configuration was multiplied by its corresponding centroid

size. ILDs were then calculated on these rescaled configurations,

reducing possible sources of differences between GM and ILD

datasets. Further details on data processing, landmarks, measure-

ments, and nuisance sources of variation are described elsewhere

(Machado et al. 2018).

MAGNITUDE OF MORPHOLOGICAL INTEGRATION

The magnitude of morphological integration of each matrix PW

was calculated as the eigenvalue variance:

var(λ) =
∑N

i=1(λi − λ̄)2

N
, (1)

where λ are the eigenvalues of PW and N are the number of traits

(Pavlicev et al. 2009). Pavlicev et al. (2009) suggested to scale

the observed eigenvalue variance by the theoretical maximum to

produce values that range between 0 and 1, which is compat-

ible with the squared correlation coefficient among traits (r2).

For covariance matrices, the maximum theoretical maximum is

achieved when all variation is concentrated on the first principal

component:

varmax (λ) = (tr (PW ) − λ̄)2 + ∑N
i=2 λ̄2

N

= (tr (PW ) − (tr (PW )/N ))2 + ∑N
i=2(tr (PW )/N )2

N

= tr (PW )2(N − 1)

N 2
, (2)

where tr (PW ) is the total amount of variation on the ma-

trix PW . The relative eigenvalue variance is calculated then as

varrel (λ) = var(λ)/varmax (λ). Values closer to 0 imply that eigen-

values have similar scales, implying a lack of covariance among

the original traits. If varrel (λ) is closer to 1, then var(λ) is close

to the theoretical maximum varmax (λ), with all variation concen-

trated along a single axis, suggesting a highly integrated structure.

The use of varrel (λ) is convenient in the present study because

the statistic is invariant to arbitrary rotations of the data, making

it ideal for the use on both GM and ILD datasets.

Even though varrel (λ) is thought to be comparable between

systems with different dimensionality (Pavlicev et al. 2009), we

only used the leading 35 eigenvalues for all analyses (the number

of ILDs chosen for the ILD analysis) to standardize the number of

traits (N = 35). This is equivalent to analyzing the datasets after

performing a principal component analysis for dimensionality

reduction. Despite this reduction, values of varrel (λ) obtained with

the reduced number of eigenvalues and the full sets were nearly

identical for both simulated and empirical datasets, suggesting
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that this procedure did not alter the varrel (λ) estimates for GM

data significantly.

SIMULATION

Even though it is possible to generate completely random GM

matrices (e.g., Walker 2000), it can be difficult to generate mean-

ingful alterations on those matrices and produce biologically

plausible shapes due to the arbitrary nature of the values of

covariances and correlations. For this reason, simulations were

based on the pooled within-group form GM covariance matrix for

the full sample of our empirical dataset. In other words, this PW

is the average covariance matrix for the full dataset weighted by

within-group degrees of freedom, which included the covariances

among Procrustes-superimposed coordinates plus the logarithm

of the centroid size. From this baseline matrix, we altered its

magnitude of morphological integration to produce a wide range

of varrel (λ) values. This was done by first performing an eigen de-

composition. The first 35 eigenvalues were kept and then raised to

different powers λp, where p was drawn from 20 equally spaced

values between 0.5 and 2.5. This value range for p was chosen

because it produced values of varrel (λ) that are comparable to the

ones in our empirical sample (Machado et al. 2018), which spans

the values found for all major mammalian lineages (Porto et al.

2009). To maintain the total amount of variation constant in the

altered matrices, eigenvalues were scaled to have the same total

amount of variation as the original first 35 eigenvalues. Modified

matrices were then reconstructed as follows:

Pp
W = V�pVt , (3)

where V is a matrix of the first 35 eigenvectors of the baseline

matrix and �p is a diagonal matrix with the modified eigenvalues

λp. When p is closer to 1, the resulting matrix possesses varrel (λ)

that is closer to the one of the original baseline matrix. When p is

greater than 1, the leading eigenvalues are proportionally larger

than the last ones, increasing the disparity between eigenvalues

and, therefore, increasing the varrel (λ).

For each of the 20 values of p, we sampled 1000 popula-

tions of 100 simulated individuals using a multivariate normal

distribution with the mean shape and mean log-centroid size as

averages, and the corresponding Pp
W as the covariance matrix.

Therefore, each individual in the simulated populations is de-

fined by a set of landmark coordinates and a centroid size. For

each sampled population, a new covariance matrix was calcu-

lated from Procrustes-superimposed configurations, along with

its corresponding varrel (λ). Next, for each simulated individual

landmark coordinates, we calculated the 35 ILDs used on the

ILD analysis, and obtained the varrel (λ) from the ILD covariance

matrix. Both GM and ILD varrel (λ) estimates were obtained for

shape and form, as described above.

EMPIRICAL ANALYSIS

To evaluate if the simulations are good representations of what

can happen in empirical datasets, we calculated varrel (λ) values

for shape and form variables on both ILD and GM representation

on our set of 67 carnivore species. Before doing so, we evaluated

two possible sources of bias in empirical estimates of integration:

sample size (Haber 2011; Fruciano et al. 2013; Adams and Collyer

2016; Grabowski and Porto 2017) and total amount of variance

(Hallgrı́msson et al. 2009; Young et al. 2010).

To evaluate the effect of sample sizes on magnitude of inte-

gration, we calculated Pearson’s product moment correlation (rp)

between integration values and sample sizes. Furthermore, we

produced rarefied estimates of varrel (λ) to remove the effect of

sample size (Fruciano et al. 2013). This was done by resampling

the original datasets with a fixed sample of 40 (the smaller sample

size in our dataset) 100 times. The varrel (λ) is calculated for each

iteration, and the average varrel (λ) across all iterations is taken

as the rarefied varrel (λ) for that species. Rarefied and full sample

varrel (λ) values were compared through Pearson’s correlation.

To evaluate the effect of amount of variance on the magnitude

of integration, we calculated the rp between varrel (λ) and tr (PW )

for shape and form variables on both ILD and GM. However, the

simple correlation between these factors might not indicate bias

in itself because variance might be preferentially concentrated on

PC1 due to the interaction of life-history traits and aspects of

the developmental system under study (Hallgrı́msson et al. 2009;

Porto et al. 2013). Therefore, we also performed semipartial cor-

relations between tr (PW ) and varrel (λ), with variation of tr (PW )

conditional on the percentage of variation on PC1.

COMPARISON BETWEEN GM AND ILD

For the empirical dataset, values of varrel (λ) were compared be-

tween GM and ILD representations using both reduced major

axis (RMA) regressions and correlation analyses using Pearson’s

product moment (rp) and Spearman rank order (rs) correlations

indexes. For RMA, a slope equal to 1 and an intercept equal to 0

means that integration values are same for both morphometric rep-

resentations being compared. This was done both statistically, by

estimating confidence intervals for the RMA statistics, and also

graphically, by plotting values of integration obtained on both

representations. Comparisons were made between shape (GM ×
ILD) and form (GM × ILD) representations, and between shape

and form for all representations (GM shape × GM form, ILD

shape × ILD form, ILD shape × GM form, GM shape × ILD

form). Because all shape × form comparisons yielded very sim-

ilar results (not shown), we focus only on the GM shape × ILD

form comparison, as these are among the most popular forms of

morphological quantification in magnitude of morphological inte-

gration studies (Esteve-Altava 2017). For the correlation analysis
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we report only the rp, because rs produces the same overall results.

For the simulated dataset, because of the presence of the strong

nonlinear relationship between representations (see Results), we

refrain from using the RMA and report only the rs .

Additionally, to visualize the evolution of magnitude of

morphological integration, we mapped the varrel (λ) values for

each morphometric representation on the phylogeny of the

group. Ancestral character state were estimated through maxi-

mum likelihood (Schluter et al. 1997) using the same phylogeny

used in Machado et al. (2018) trimmed to match the current

sample.

All analyses were run under the R Core Team (2015) pro-

gramming environment using the “tidyverse” set of packages. GM

analyses were carried out using the geomorph package (Adams

and Otarola-Castillo 2013). Procrustes correlation tests were done

with the vegan package (Oksanen et al. 2017). Ancestral char-

acter state reconstruction was done with the phytools (Revell

2012) package.

Results
Simulations were able to sample almost the full theoretical range

of varrel (λ) values, especially for form (Fig. 1A). All correla-

tions between GM and ILD were strong (rs > 0.978) and non-

linear. The correlation between form ILD and shape GM was

strongly nonlinear (Fig. 1A, third panel). Intermediate values are

the most discrepant between GM and ILD for form and shape.

For form, GM values tended to be greater than the ones for ILD

values (Fig. 1A, first panel), while for shape, the opposite was true

(Fig. 1A, second panel). Values of form ILD are much larger than

values of shape GM, with the exception of values at the extremes

of the distribution.

For the empirical datasets, varrel (λ) values were not corre-

lated with sample size (p > 0.41 for all morphometric represen-

tations), and rarefied values were nearly identical with the ones

obtained from the full dataset (rp > 0.989 on all accounts, average

difference = 0.003 ± 0.003). Correlations between varrel (λ) and

tr (PW ) changed broadly between different morphometric repre-

sentations. Although correlations between these factors was low

for shape variables (both GM and ILD had rp < 0.298), they were

higher for form variables, particularly for GM (rp = 0.721 for GM

and rp = 0.591 for ILD). However, semipartial correlations are

vastly smaller (−0.030 to 0.070 for all comparisons), suggesting

that most of the correlation is given by PC1. Because both sources

of bias are considered to be less relevant on the present dataset,

we chose to focus empirical comparisons on the observed values

of varrel (λ) for the full samples.

Empirical values of varrel (λ) for carnivoran species were

more restricted in range than for the simulated data, with form

values ranging from 0.1 to 0.7 and shape values ranging from 0.05

to 0.2. The correlations between GM and ILD within shape and

form were strong (shape: rp = 0.804; form: rp > 0.964; Fig. 1B,

first and second panels, respectively), whereas the correlation

between form ILD and shape GM was moderate (rp = 0.393;

Fig. 1B, third panel). RMA analyses showed that intercepts were

very similar to 0 in all comparisons, and slopes diverged from

the expected value of 1 (Fig. 1B), with the comparison between

form ILD and shape GM showing slopes that differed greatly

from 1.

Ancestral estimates of magnitude of morphological integra-

tion along the phylogeny shows little divergence in the general

phylogenetic pattern observed for both representations (GM and

ILD) in both form and shape variables (Fig. 2). For form rep-

resentations (Fig. 2A), pinnipeds and ursids show the largest

magnitudes of morphological integration, whereas procyonids are

the ones with the lowest values, on average. For shape variables

(Fig. 2B), despite the lower between-representation correlations

in comparison to form variables (Fig. 1), the overall phylogenetic

pattern is similar, especially the fact that canids present lower

magnitude of morphological integration values.

DISCUSSION

We show that the choice of morphometric representation can lead

to important differences on the estimates of integration magni-

tudes. As a consequence, it is not possible to directly compare

values of magnitudes of morphological integration obtained from

different morphometric representations. Despite that, both simu-

lation and empirical results show that magnitude of morphologi-

cal integration values are sorted similarly in both representations

within form and within shape. In other words, a species that is

considered to have “low” (or “high”) magnitude of morphological

integration for form or shape in one representation will most likely

also be considered as such in the other representation. The same is

not true for comparisons between form ILD and shape GM, which

shows that magnitudes of morphological integration measured for

form and the ones measured for shape are not comparable either

on the empirical or simulated datasets. Our ancestral state re-

construction reinforces both these ideas, as the observed patterns

for the evolution of magnitude of morphological integration of

form or shape were consistent within methods, but divergent be-

tween methods (Fig. 2). Therefore, although it is not advisable to

combine results from studies using different morphometric repre-

sentations, it is possible to understand general patterns of evolu-

tion and variation of form or shape magnitudes of morphological

integration using different morphometric representations.

Both simulation and empirical results show that magnitude

of morphological integration values are biased depending on the

morphometric representation and space chosen. Specifically, val-

ues for shape magnitude of morphological integration were higher

for ILD than for GM, and the opposite trend was observed for
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A.

B. Empirical

rp
rp rp

Figure 1. Relationship between the varrel (λ) obtained on geometric morphometric and interlandmark distance for simulated (A) and

empirical (B) datasets. SMA regression statistics: β-slope, values between parentheses are the confidence intervals; rp-Pearson’s product

moment correlation index; R2-coefficient of determination. Solid line—empirical SMA regression line. Dashed line—line where values

are equal for both morphometric representations (slope = 1 and intercept = 0).

form. These patterns are somewhat expected. It has long been

argued that ILD data might add spurious correlations among traits

depending on how traits are defined. For example, we expect traits

that share landmarks to present nonzero covariances (Rohlf 2000),

and if distances are defined across similar structures (i.e., mapping

similar overall dimensions), they will most likely vary in a similar

fashion (Zelditch et al. 2012). Despite the fact that the ILD used

here are chosen to minimize those factors (Cheverud 1982), some

small effect might be enough to slightly increase the magnitude

on the ILD dataset. Thus, by adding covariances among traits we

would expect the shape magnitude of morphological integration

of ILD to be higher than the one for GM.

For form, however, this interpretation does not hold be-

cause the GM magnitude of morphological integration values

are slightly inflated in relation to the ILD values. In this case, the

amount of size variation may explain the observed pattern. Size is

the main feature of biological form, and will usually dominate the

variation in both ILD and GM (Jolicoeur 1963; Bookstein 1989;

Mitteroecker et al. 2004). This means that size will load strongly

on the first PC and therefore will be a major component in deter-

mining the magnitude of morphological integration (Hallgrı́msson

et al. 2009; Marroig et al. 2009; Porto et al. 2013). This phe-

nomenon is simple to understand if we consider the magnitude

of morphological integration in terms of the varrel (λ): everything

else being equal if the relative contribution of the first eigenvalue

increases, the standard deviation of eigenvalues will increase ac-

cordingly, leading to higher values of varrel (λ). Curiously, the

amount of variation on the PC1 is higher on GM (0.551 ± 0.116)

than on ILD (0.498 ± 0.119). Based on our discussion above, the

inflation observed could be due to the large difference in the scale

of size variation when compared to the scale of shape variation

in GM. This could, in turn, explain why magnitude of morpho-

logical integration values for form tend to be higher on GM than

on ILD (Fig. 1B, second panel). Because the difference between

GM and ILD magnitudes of morphological integration values are

relatively small, it is probable that size variation is similarly cap-

tured by ILD and GM, despite the difference in how that variation

is measured.
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Varrel(λ) Varrel(λ)

Varrel(λ)Varrel(λ)

Figure 2. Mapping of varrel (λ) as a continuous trait on the Caniform (Carnivora) phylogeny. Triangles associated with taxa names refer

to the phylogenetic average of varrel (λ) for that group. GM, geometric morphometrics; ILD, interlandmark distances.

The relationship between size and shape may also explain

why the extreme values for the magnitude of morphological in-

tegration converge in both representations. This pattern was ob-

served in all cases, but it is most apparent on the simulation

dataset for the form ILD × shape GM comparison (Fig. 1A, last

panel). In this case, matrices that present low magnitude of mor-

phological integration values (i.e., near the theoretical minimum

of varrel (λ) = 0) were produced by applying low values of p to

equation (3). This means that the distribution of eigenvalues was

homogenized and that the first PC explains a similar amount of

variation in relation to other PCs. In other words, this matrix de-

scribes a mostly spherical distribution of traits. In this case, size

variation will not dominate the covariance matrix structure be-

cause all dimensions contribute almost equally to the total amount

of variation in the sample. Thus, matrices will present low mag-

nitudes of morphological integration with or without size. Anal-

ogously, when p is high, almost all variance in a sample will be

accounted for by the first PC and the magnitude of morphological

integration will be the strongest (will approach the varrel (λ) = 1).

The PC1 usually is a combination of size variation and al-

lometry (Huxley 1924; Jolicoeur 1963; Bookstein et al. 1985;

Klingenberg 2016) and our case is no exception. What we ob-

serve when p is high is that the removal of size results in lower

magnitudes of morphological integration in comparison to the

form analysis (Fig. 1A, last panel) because the amount of vari-

ation explained by the PC1 decreases without size. However, as

allometry is also an important contributor for the amount of vari-

ation explained by the PC1, this PC still presents considerably

more variation than other axes. As a consequence, high magni-

tude of morphological integration values will still be observed for

these matrices. Thus, unless ones’ data cluster in the extremes of

the magnitude of morphological integration distribution, which is
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not the case for mammalian skulls at least, it is not advisable to

conjointly discuss results obtained on different representations.

This then raises the question of what should be analyzed

when making statements of magnitude of morphological integra-

tion: shape or form? One possible answer is that a structure should

always be analyzed as a whole, and all factors should be taken into

account (Bookstein 2009). From an evolutionary modeling point

of view, the exclusion of important traits related to fitness varia-

tion could significantly mislead our understanding of the micro-

and macroevolutionary dynamics (Morrissey et al. 2010). Given

that size has major effects on fitness components (Calder 1984),

excluding it from morphometric analysis might be ill advised. On

the other hand, size is thought to affect all structure in a coordi-

nated fashion, possibly obscuring localized genetic and epigenetic

effects (Marroig et al. 2004; Mitteroecker and Bookstein 2009).

Thus, its removal from the data might help us better understand

details about morphological modularity that would not be evi-

dent otherwise (Marroig et al. 2004; Shirai and Marroig 2010;

Porto et al. 2013). Also, it is conceivable that for some biologi-

cal questions size truly is unimportant, such as the evolution of

biomechanical proprieties, which might be fully independent of

size (Rayner 1985; Dumont et al. 2009; Collar et al. 2014; Polly

et al. 2016). These different choices for analyzing morphometric

data could give insights into different aspects of morphological

integration and evolution, and we should make choices that are

appropriate for the questions we are trying to answer.

The standardized eigenvalue variance allows us to measure

the magnitude of morphological integration in any numerical

representation of shape or form, but we should always consider

the actual theoretical implications of analyzing integration in

these different morphospaces. The theory of morphological inte-

gration was originally developed to study measurements that are

individually interpretable, such as lengths or weights (Olson and

Miller 1958), and some predictions regarding the magnitude of

integration only make sense in the context of those measurements.

For example, the idea that functionally related traits will be more

correlated, while true for these types of measurements, might not

be so for shape variables such as ratios. Consider the case of the

carnivoran mandible (Fig. 3). According to theory, the optimal

position of the resultant force of the jaw closing muscles is 60%

of the way from the mandibular-skull articulation to the carnassial

tooth (Greaves 1983; Fig. 3A). The magnitude of morphological

integration between the distance of the adductor muscle insertion

(which influences the position of the resultant force) and of the

carnassial tooth to the articulation is strong, as expected (Fig. 3B).

However, if we measure the same features as a ratio of the total

length of the mandible, we find that these variables are less

integrated (Fig. 3C), a fact that could then lead to the misguided

rejection of the hypothesis of functional association between

the two traits. Interpretations of magnitude of morphological

integration can be even less straightforward on shape–size mor-

phospaces (sensu Mitteroecker et al. 2004), that is, when shape

variables are analyzed along with a properly scaled size variable.

On the mandible example above, if we add a size measure to

the shape ratios we obtain a strong magnitude of morphological

integration, despite the absence of association between ratios

(Fig. 3C–E). In this case, the high magnitude of morphological

integration is indeed the consequence of functional association

among traits, as shape ratios and sizes stem directly from the

original highly integrated variables. When interpreting morpho-

logical integration, we must take the meaning of the variables

into account and consider how biological hypothesis translate

into predictions about integration in the particular choice of

representation.

Our results for carnivoran species are illustrative of how an-

alyzing integration on different spaces might lead to different

results and conclusions. Magnitude of morphological integration

values for form have shown that large species, such as pinnipeds

and bears, are among the most integrated ones (Fig. 2A). Larger

sizes could be achieved by increased growth rates during on-

togeny, a fact that could result into a greater variance in size and

allometric variation in detriment of other aspects of shape (Porto

et al. 2013). However, once size is removed, these groups are no

longer among the most integrated ones. In fact, when we evaluate

only the magnitude of integration of shape, Canidae is the group

that stands out as being consistently less integrated than other

taxa (Fig. 2B). As discussed above, interpreting shape integration

can be problematic on its own. However, adding the log-centroid

size on the shape data (as in the GM form dataset) do yield in-

termediary values of integration (the same is true if we add the

log-centroid size to the ILD shape ratios, not shown), suggest-

ing that the low shape integration in Canidae is not due to lack

of morphological variation in shape variables. In fact, previous

analysis have shown that canids have an increased evolutionary

potential for some localized aspects of skull shape, namely those

relating to the relative length of the face. Thus, it is likely that a

lower shape integration observed for the group actually reflects

a less constrained and more flexible (sensu Marroig et al. 2009)

phenotype. This shows that a proper examination of morpholog-

ical integration magnitudes cannot be taken out of the context of

the morphospace under analysis.

In conclusion, our results show that the magnitude of mor-

phological integration obtained from different morphometric rep-

resentations is unlikely to be directly comparable. Even in the

case of form, where absolute values are similar among repre-

sentations, GM estimates tend to be larger than those for ILD

(Fig. 1). Despite this, we observe a high correlation between val-

ues obtained from different representations, that is, varrel (λ) of

different species will be similarly sorted in both ILD and GM, es-

pecially if we are analyzing form data. Furthermore, large-scale
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A

B C

D E

Varrel(λ)=0.958 Varrel(λ)=0.146

Varrel(λ)=0.975

Figure 3. (A) An example of functional traits on the carnivoran mandible: a—length between the articulation and the abductor muscle

insertion; b—length between the mandibular-skull articulation and the carnassial tooth; c—dentary length. (B) Relationship between a

and b. (C) Relationship between a and b as ratios of the c (a/c and b/c, respectively). (D) Relationship between a/c and c standardized by

its average [c/mean(c)]. (E) Relationship between a/c and c/mean(c). varrel (λ) was calculated for the association between linear variables

a and b (B), shape ratios a/c and b/c (C), and both shape ratios, a/c and b/c, and the standardized size c/mean(c) (D).

phylogenetic comparisons of form or shape can produce similar

conclusions regardless of representation, even if species values

are not equal. However, magnitudes of morphological integra-

tion obtained for form will not be compatible to those obtained

for shape and vice versa, and care should be taken when evalu-

ating conclusions reached by works focusing on these different

representations of morphological variation.
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