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Abstract

Multivariate quantitative genetics provides a powerful framework for understanding patterns 
and processes of phenotypic evolution. Quantitative genetics parameters, like trait heritability 
or the G-matrix for sets of traits, can be used to predict evolutionary response or to understand 
the evolutionary history of a population. These population-level approaches have proven to be 
extremely successful, but the underlying genetics of multivariate variation and evolutionary change 
typically remain a black box. Establishing a deeper empirical understanding of how individual 
genetic effects lead to genetic (co)variation is then crucial to our understanding of the evolutionary 
process. To delve into this black box, we exploit an experimental population of mice composed 
from lineages derived by artificial selection. We develop an approach to estimate the multivariate 
effect of loci and characterize these vectors of effects in terms of their magnitude and alignment 
with the direction of evolutionary divergence. Using these estimates, we reconstruct the traits in the 
ancestral populations and quantify how much of the divergence is due to genetic effects. Finally, we 
also use these vectors to decompose patterns of genetic covariation and examine the relationship 
between these components and the corresponding distribution of pleiotropic effects. We find that 
additive effects are much larger than dominance effects and are more closely aligned with the 
direction of selection and divergence, with larger effects being more aligned than smaller effects. 
Pleiotropic effects are highly variable but are, on average, modular. These results are consistent with 
pleiotropy being partly shaped by selection while reflecting underlying developmental constraints.

Keywords:  G-matrix, genetic architecture, genome prediction, genotype–phenotype map, horseshoe prior, QTL mapping

Individuals are composed of a complex array of traits that are inter-
connected through shared genetic, physiological, and developmental 
processes. Consequently, evolution is inherently a multivariate pro-
cess, wherein suites of traits interact to determine an individual’s 
fitness, which generates selection that cascades to the genomic level 
through the genotype–phenotype relationship leading to heritable 
changes across generations (Lande and Arnold 1983; Klingenberg 

2008; Melo et  al. 2016). Therefore, understanding evolutionary 
change in response to selection requires an understanding of the 
relationship between genotypic variation and multivariate traits. 
The quantitative genetics framework was developed to achieve 
this goal, historically relying on statistical measurement of genetic 
covariation between traits as a summary of their genetic “connected-
ness.” The covariances estimated using this framework can be used 
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to understand how sets of traits evolve together, including forward-
looking predictions for the multivariate response to selection (Lande 
1979) and the retrospective analysis of divergence by selective and 
neutral processes (Felsenstein 1988). The classical  perspective in 
quantitative genetics, focused on statistical properties of trait covari-
ation, can provide insights into these problems. However, it is limited 
by the fact that it treats the link between genotype and multivari-
ate phenotype, which underlies patterns of covariation, as a black 
box. As a result, these approaches do not provide direct insights into 
the genetic architecture underlying patterns of genetic covariation, 
which ultimately determines how sets of interconnected traits evolve 
across generations. Therefore, an explicit link between the properties 
of the individual loci that underlie the multivariate genotype–pheno-
type relationship, and the associated consequences for patterns of 
genetic covariation are central to the study of evolution.

To understand the patterns of genetic covariation between traits, 
studies have taken a population level approach (top-down) that 
relies on pedigree relations to dissect components of phenotypic 
covariation. These studies are generally focused on understanding 
how variation constrains evolution or how covariation (in the statis-
tical sense) itself evolves in relation to multivariate selection (Arnold 
et al. 2008; Futuyma 2010). The effect of covariation in constraining 
short-term evolution is well established: if traits covary genetically 
the evolution of a focal trait depends on the selection upon the traits 
it is correlated to. As a result, a trait that is not under selection can 
evolve as a correlated response to selection on other traits (Lande 
1979; Grant and Grant 1995), and for traits under selection, their 
response can be reduced or enhanced due to antagonistic (where the 
correlated response opposes the direction of direct selection on the 
trait) or synergistic selection (where the correlated response is in 
same direction as direct selection). Importantly, although we often 
focus on these sorts of consequences of multivariate selection, they 
are limited to describing evolution in terms of changes in trait means. 
However, multivariate genetic architecture not only determines how 
trait means evolve, it also determines how patterns of genetic covari-
ation are themselves shaped by selection, which can lead to a com-
plex feedback between genetic architecture and evolution, which we 
don’t fully understand (Turelli and Barton 1994; Jones et al. 2004, 
2014). The extent to which genetic covariation can evolve has been 
investigated empirically through short-term artificial (and natural) 
selection experiments, which have shown that the G-matrix can 
quickly evolve in response to selection (Careau et  al. 2015; Assis 
et al. 2016; Penna et al. 2017), but there are also examples of fail-
ure to increase multivariate variation via selection (Sztepanacz and 
Blows 2017). Given this scenario of experimental and natural obser-
vations, a quantitative understanding of the sources and causes of 
genetic covariation, and on how these constraints can evolve, is fun-
damental to furthering our understanding of diversification.

Patterns of genetic covariation between traits can be due to either 
pleiotropy (where a locus affects more than one trait), or linkage 
disequilibrium (LD) (where alleles at different loci affecting differ-
ent traits tend to be co-inherited), but studies generally assume the 
primacy of pleiotropy as a cause of long-term genetic covariation, 
because genes are generally expected to reach linkage equilibrium 
over evolutionary timescales, and hence even when LD is present, its 
influence is likely to erode (unless actively maintained by selection; 
Lande 1980; Barton and Turelli 1989). While the potential causes 
of covariation are known, the population level top-down approach 
only brings us indirect evidence of their contribution to the struc-
ture and evolution of genetic covariation, and therefore we must rely 
on theoretical and computational models to infer how pleiotropy 

and LD evolve under selection (Barton 1990; Hansen et al. 2006; 
Pavlicev et  al. 2011; Melo and Marroig 2015). Quantitative trait 
locus (QTL) mapping and genome-wide association studies (GWAS) 
have begun to overcome this limitation, offering preliminary insights 
into the genetic architecture underlying covariation (especially for 
growth and morphological traits in mammals; Leamy et al. 2002; 
Wolf et  al. 2005; Kenney-Hunt et  al. 2008; Porto et  al. 2016). In 
these studies, the link between pleiotropy and covariation has been 
made in a mostly qualitative manner using mapping locations, with 
effects estimated using univariate models. Genomic regions that are 
mapped on to more than one trait are considered pleiotropic, and 
the observed covariation between these traits is attributed to these 
common QTL. This method, along with trait specific effect estimates 
for each QTL, has proven very powerful for understanding genetic 
architecture (Wang et al. 2010; Wagner and Zhang 2011). For exam-
ple, several studies in mice have pointed to a modular genotype–phe-
notype map, composed of predominantly local genetic effects, as the 
main driver of variational modularity in growth and morphological 
traits (Cheverud et al. 1996; Mezey et al. 2000; Leamy et al. 2002), 
in opposition to the hypothesis of compensatory antagonistic and 
synergistic effects that can lead to variational modularity via hidden 
pleiotropy [see Pavlicev and Hansen (2011) for a discussion on these 
different GP maps], as was suggested in early quantitative genetics 
analysis (Cheverud et al. 1983).

Advances in statistical and computational methods have started 
to change the landscape of mapping approaches, with the advent of 
genome prediction and regularization methods. Instead of mapping 
a small number of QTL of sufficiently large effects, genome predic-
tion methods attempt to predict the phenotype using an approach 
that includes all available markers simultaneously in large predic-
tion models (Meuwissen et al. 2001; de Los Campos et al. 2013). 
Because many more predictors than are relevant for the phenotype 
are included in the model, some computational method must be 
used to identify the relevant components of the model (i.e., regres-
sion coefficients). Regularization, or shrinkage, methods allows 
these models to automatically identify which predictors (markers) 
are relevant to predicting the phenotype, and to give these relevant 
markers more weight in the model, while markers that do not add 
to the prediction are ignored (Murphy 2012). In general, genome 
prediction methods perform well in predicting phenotypes, but at 
the cost of interpretability. Unlike mapping models, genome predic-
tion distributes the genetic effects across all markers and does not 
identify specific QTL linked markers (this could be done after the 
model fitting by some variable selection procedure like in Piironen 
and Vehtari (2015) or Moser et al. (2015) but doing so is uncom-
mon). GWAS and QTL mapping methods have also advanced, with 
several mixed-model association methods allowing for the efficient 
analysis of a very large number of markers in structured populations 
(Lippert et al. 2011; Lipka et al. 2012; Zhou and Stephens 2012), 
all with good statistical performance (Eu-Ahsunthornwattana et al. 
2014). However, these genome prediction and mixed-model asso-
ciation methods still deal poorly with multiple traits, and so we are 
limited to the traditional method of mapping traits separately and 
assessing pleiotropy post hoc. These shortcomings may be overcome 
in the near future, with some promising methods being developed 
for efficient multivariate mapping (Pitchers et  al. 2019; Hannah 
et  al. 2018; Kemper et  al. 2018). Multivariate mapping is funda-
mental for a quantitative study of pleiotropy, as it allows for the 
detection of QTL with large effects overall but small effects on each 
individual trait under investigation. Multivariate mapping, when 
combined with quantitative genetics theory, also allows for direct 
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quantification of the effects of pleiotropic genetic effects on covari-
ation. This has the potential of allowing for a much finer under-
standing of the genetic basis of covariation when compared with the 
simple mapping of common QTL.

Here, we develop a multivariate mixed model framework to 
understand the genetic basis of the patterns of covariation among 
growth traits in a mouse cross. Growth and size are excellent mod-
els for the study of genetic architecture, for several reasons. First, 
size is very amenable to artificial selection, having standing herit-
able variation and being easy to measure by several proxies, such as 
weight or length. Second, final size is reached through various stages 
of growth, and these stages have different mechanisms and timings. 
For example, quantitative genetics selection experiments in mice 
showed that changes in cell number and cell size were somewhat 
independent mechanisms for changing the final size in population 
under selection (Falconer et al. 1978; Cheverud et al. 1983; Leamy 
and Cheverud 1984; Riska et  al. 1984). These stages of develop-
ment can then be considered as several related traits interacting to 
form the final phenotype. Third, covariation between the different 
stages of growth (like early and late growth) provides an attractive 
system to investigate the relation between pleiotropy and covaria-
tion because of the obvious physiological relationship between the 
traits. We primarily focus on a QTL mapping model to study the 
distribution of pleiotropic effects, and to link the pleiotropic effects 
of individual loci to the covariation between traits and to evolution-
ary change. We also adapt our mapping approach to fit a genome 
prediction model, allowing us to examine the differences and 
advantages of these alternative approaches. We apply these models 
to a population of mice derived from an inter-cross of mouse strains 
that diverged in size by univariate directional selection. By focusing 
on traits related to population divergence, we are able to place our 
genetic analyses in an evolutionary context. By using this explicit 
bottom-up approach to relate pleiotropy, selection, and covaria-
tion, we ask: how malleable are patterns of covariation between 
traits? How much do they change under selection? Do patterns 
of pleiotropy align with selection or do they reflect developmen-
tal constraints? Can we use segregating variation to reconstruct 
the ancestral states of populations diverging by selection? All these 
questions help us come to a richer understanding of variation and 
of the evolutionary processes.

Methods

Study Population
Our focal population is comprised of 1548 animals from the F3 gen-
erations of an intercross between the inbred LG/J and SM/J strains 
of mice (for details, see Cheverud et  al. 1996; Wolf et  al. 2008). 
These strains were derived independently by artificial selection for 
large [LG/J strain derived by Goodale (1938)] or small [SM/J strain 
derived by MacArthur (1944)] body weight at 60 days of age (Chai 
1956). They differ by ca. 8.5 within-strain standard deviations in 
adult body weight (at 63 days of age; Kramer et al. 1998). For sim-
plicity, we refer to the lines as large (LG/J) and small (SM/J).

Details of the genotyping are provided by Wolf et al. (2008) and 
are only briefly outlined here. Each individual was genotyped at 353 
SNP loci distributed across the 19 autosomes. This number of SNP 
loci is small by modern standards, but it is adequate in relation to 
the amount of recombination in the F3 generation, and additional 
markers would not add much more information on the segregating 
variation. Genotypes at each locus (LL, LS, and SS, with the “L” 

allele coming from large and the “S” allele coming from small) were 
assigned additive (Xa) and dominance (Xd) genotypic index values, 
where the values of Xa are LL = +1, LS and SL = 0, SS = −1, and for 
Xd are LS and SL = 1, LL and SS = 0 (Wolf et al. 2008).

Animals were weighed weekly from 1 week of age. Our analy-
ses focus on weight gained over each one week interval (“growth”) 
from 1 week to 7 weeks of age. These growth traits were calculated 
simply as the absolute difference in body weight between the weeks 
that define each time interval (e.g., growth1,2 = weight2 – weight1). 
See Vaughn et al. (1999) and Hager et al. (2009) for further details.

Phenotypic Divergence
The vector of phenotypic divergence between founders was esti-
mated as the difference between the means of the phenotypes of the 
founders. To estimate the direction of selection, we used a multiple 
regression of the growth traits in the F3 with the target of selec-
tion, week 9 weight, and used the partial regression coefficients as 
the expected direction of the selection gradient. By multiplying this 
selection gradient to the observed G-matrix, we also obtained an 
expected phenotypic divergence, which can be compared with the 
observed divergence. We also scaled the selection gradient so that the 
norm of the expected divergence vector is the same as the observed 
vector. This scaling is necessary because the magnitude of selection 
estimated by the multiple regression is too small to account for the 
many generations of selection. Using these multivariate vectors of 
selection and divergence, we measured the alignment of the esti-
mated genetic effects (see below), phenotypic divergence and selec-
tion gradients. This allows us to characterize the genetic basis of the 
phenotypic divergence due to selection. Alignment between vectors 
was measured using vector correlations, that is, the cosine of the 
angle between the vectors being compared. We also investigate the 
relationship between the norm of the pleiotropic effect vector and its 
alignment with the directions of selection and divergence.

Loci and Alleles
We build our analysis on the classic quantitative genetic framework 
using a model of n biallelic loci that affect the value of t traits. At 
each jth locus, we label alleles as Lj and Sj to indicate the allele 
originating from the large and small strains, respectively. The fre-
quencies of alleles are given by pj for Lj and qj for Sj. To build a 
multi-locus model, we assemble genotypes from the 4 possible hap-
lotypes at each pair of loci: HLjLx, HLjSx, HSjLx, and HSjSx (hence the 
multi-locus genotype is assembled from pairwise combinations of 
loci). The frequencies of the 4 haplotypes at each locus pair depends 
on the frequencies of alleles at the 2 loci and the extent of link-
age disequilibrium, such that HLjLx = pjpx + λjx, HLjSx = pjqx − λjx, 
HSjLx = qjpx − λjx, and HSjSx = qjqx + λjx, where λjx is a measure of 
LD defined as λjx = HLjLxHSjSx −HLjSxHSjLx.

Genetic Effects
Genotypes at each locus, j (listed as LjLj, LjSj , SjSj) were assigned 

additive (Xa
j  ∈ {1, 0, −1}) and dominance (Xd

j  ∈ {0, 1}) index 
values, such that



LjLj

LjSj
SjSj


 =



1 1 0
1 0 1
1 − 1 0





rj
aj
dj


� (1)

where the overbar indicates the average phenotype associated with 
each genotype (i.e., the “genotypic value” for each), which yields 

Journal of Heredity, 2019, Vol. XX, No. XX� 3
D

ow
nloaded from

 https://academ
ic.oup.com

/jhered/advance-article-abstract/doi/10.1093/jhered/esz011/5463195 by Eli M
 O

boler Library Serials user on 15 April 2019



estimates of the additive and dominance genetic effects correspond-
ing to the standard definition (Falconer and Mackay 1996).



rj
aj
dj


 =




(LjLj+SjSj)
2

(LjLj−SjSj)
2

LjSj −
(LjLj+SjSj)

2




� (2)

The additive and dominance effects (i.e., genotypic values, defined in 
Equation 2) of locus j were estimated as effects from a linear model:

E[zi] = rj + ajXa
ij + djXd

ij + εij� (3)

where zi indicates the phenotypic value of individual i, rj the refer-

ence point (representing the intercept), Xa
ij the additive and Xd

ij the 
dominance genotypic index values for individual i at locus j, and 
εij the residual. Equation 3 can be extended to a multivariate form:

E[Zi] = rj + ajXa
ij + djXd

ij + εij� (4)

where Zi is the vector (with length t) of traits measured for indi-
vidual i. This model provides estimates of the vectors of additive 
(aj = a1( j) . . . at( j)) and dominance (dj = d1( j) . . . dt( j)) effects, 
which summarize the pleiotropic effects of locus j across the t traits.

QTL Mapping
We identified candidate QTL for the growth traits by fitting mul-
tivariate linear mixed models using dam as a random effect, and 
using separate fixed terms for the additive and dominance effects 
of the loci under consideration, as in Equations 3 and 4. The sim-
ple family-level random effect controls for relatedness because all 
families in the F3 are equally related. To estimate the QTL location, 
we used interval mapping models, by including flanking markers at 
various distances on either side of the focal marker (5, 10, 15, and 
20 cM). Significance was assessed by dropping the focal marker and 
using a likelihood ratio test (LRT) with a Satterwhite correction, 
which provides the appropriate effective degrees of freedom for the 
fixed effects (Wolf et al. 2008). Models were fit in the R program-
ming language using the lme4 package (Bates and Sarkar 2008), 
and the LRT was performed in the lmerTest package (Kuznetsova 
et al. 2017). We calculate chromosome-wise and genome-wise sig-
nificance using a Bonferroni correction with the effective number of 
markers in each chromosome and in the whole genome. The effec-
tive number of markers captures the effective number of statistical 
tests that are performed given that the tests are correlated due to 
LD between markers (Nyholt 2004; Li and Ji 2005). For example, 
if two markers are highly correlated, the Bonferroni correction for 
two tests would be too conservative, and the appropriate correction 
is given by the effective number of tests, preserving both power and 
the correct nominal significance (Li and Ji 2005; Wolf et al. 2008). 
A list of markers and code for performing the mapping is available 
in the supporting information and at https://github.com/diogro/
mouseGrowthQTLs.

Using the list of candidate markers, we then estimated the effects 
of each marker in all of the traits using a Bayesian multiple multi-
variate regression, again with family as a random effect. We used 
unit normal priors on the regression coefficients, centered Cauchy 
priors with unit scale on the variances and LKJ priors with scale 4 on 
the genetic and residual correlations between traits. These priors are 
weakly informative priors on the regression coefficients. The priors 
on the genetic correlations provide shrinkage on the genetic correla-
tions, which should improve the estimates (Schäfer and Strimmer 

2005; Marroig et al. 2012). This regression model for the selected 
markers produces two vectors of effects for each marker on each 
trait, one for additive effects and one for dominance effects. We call 
these effect vectors pleiotropic vectors, as they measure the full pleio-
tropic effects of all the significant markers on the observed traits. 
This multiple regression was implemented in the statistical modeling 
language Stan (Carpenter et al. 2017) using custom code, also avail-
able at https://github.com/diogro/mouseGrowthQTLs.

Genome Prediction
For the genome prediction, instead of running single marker models to 
select candidate markers, we ran one full model with all of the mark-
ers and used a Bayesian linear model that included regularization in 
the marker coefficients to induce sparseness among these coefficients. 
To achieve this sort of shrinkage in the marker effects, we use the 
horseshoe prior (Carvalho et al. 2010) on the regression coefficients 
for the markers. The horseshoe prior is a fully Bayesian sparsity induc-
ing regularizing prior with excellent statistical performance (Carvalho 
et al. 2010; Murphy 2012; Piironen and Vehtari 2015, 2017). Adding 
these priors allow us to include all markers simultaneously because 
they produce per-marker coefficients that are either heavily shrunken 
towards zero, indicating that the marker has no effect on a particular 
trait, or not shrunken, estimating the putative effect of that marker 
on a trait. This produces pleiotropic vectors for each marker in our 
model, but most of the coefficients in these pleiotropic vectors are 
shrunken towards zero and do not contribute to the prediction. We 
implemented a custom version of the regularized horseshoe prior in 
the statistical modeling language Stan using the recommendations in 
Piironen and Vehtari (2017). We once again include the family level 
random effect that accounts for relatedness and partition the marker 
effect into additive and dominance components.

Estimation of Quantitative Genetic Parameters
The genetic variance–covariance matrix was estimated from the null 
QTL mapping model (see above), where the same model was fitted 
without any marker information included. This provides a family-
level estimate of the genetic covariance matrix based on the covari-
ance of full siblings. Because it is based on full siblings, it does not 
provide a direct estimate of the additive genetic variance–covariance 
matrix (i.e., the G-matrix). Rather, it is composed of one-half of the 
additive genetic covariance matrix plus one-quarter of the domi-
nance genetic covariance matrix, plus any covariation due to shared 
environment within families. Therefore, we refer to this as the “full-
sib” genetic variance–covariance matrix.

Ancestral Trait Reconstruction
As a test of the quality of the pleiotropic genetic effect we estimated 
in the QTL mapping and genome prediction model, we used the esti-
mated pleiotropic vectors to predict the phenotype in the ancestral 
founder populations of the large and small mice. We can predict the 
phenotype of the ancestral lines by asking what the phenotype of 
an individual of the F3 generation would be if this individual had 
only small or large alleles. Both the QTL mapping and genome pre-
diction models provide estimates of the vector of additive effects 
for all loci on all traits. Each additive effect corresponds to half 
the difference between the average phenotypes of the alternative 
homozygotes. Therefore, the vector of additive effects can be mul-
tiplied by the index value of +1 to yield the estimated trait value of 
a large allele homozygote across all loci, as a deviation from the F3 
mean (which represents the average reference point for the model). 
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Likewise, multiplying the vector of additive effects by an index value 
of −1 yields an estimate of the phenotypic value of the small allele 
homozygote across all loci (again, as a deviation from the mean).

E [ZLL] = µ+
n∑
j=1

aj� (5)

and

E [ZSS] = µ+
n∑
j=1

− aj� (6)

Estimation of Genetic (Co)variances
To separate heritable (additive) from nonheritable (dominance) genetic 
variation, we first define the average effect of an allele substitution (αj
), which corresponds to the expected change in the value of each of the 
t traits resulting from replacing an S allele with an L allele. The vector 
αj therefore summarizes the heritable (pleiotropic) effect of a locus 
since it reflects how changing an allele at a locus would, on average, 
change the phenotype of an individual. Although the genetic effects (aj 
and dj) are a property of the locus, the average effect of an allele sub-
stitution depends on the frequencies of alleles in a population:

αj = aj +
[
qj − pj

]
◦ dj� (7)

where ◦ indicates the Hadamard (element wise) product, which yields

αj=



a1( j) + d1( j)(qj − pj)

...

at( j) + dt( j)(qj − pj)


� (8)

Equations 7 and 8 emphasize that the additive genetic variance con-
tains two components, one caused by the additive effects and one 
caused by dominance effects.

Each jth locus contributes to the additive, Gk = 2pjqjα2
k( j), and 

dominance, Dk = (2pjqjdk( j))
2, genetic variances of trait k. Likewise, 

each locus contributes to the additive, Gkl = 2pjqjαj(k)αj(l) , and 
dominance, Dkl = (2pjqjdk( j)dl( j))

2, genetic covariances between 
traits k and l. The individual contributions of loci can be summed to 
yield the total additive and genetic (co)variances if loci are independ-
ent. However, when there is linkage disequilibrium there will be an 
additional component of (co)variation:

Gkk =
n∑
j=1

2pjqjα2
j(k) +

n∑
j=1

n∑
x=1

[
2λjxαj(k)αx(k)

]
j�=x

� (9)

The second term on the RHS is summed over all pairs of loci not 
including a locus with itself (hence the condition given that j �= x),  
given that λjx = λxj . The first summation term on the RHS of 
Equation 9 represents the contribution of individual loci to the 
total additive genetic variance, while the second term represents 
the additional variation caused by LD between loci. This latter 
term essentially represents the allelic covariance between loci, 
such that the total additive genetic variance is composed of a term 
arising from the effect of allelic variation (hence it being weighed 
by the squared average effect) and a term arising from the allelic 
covariance among loci (weighted by the product of the average 
effects of the alleles).

As for the off diagonal terms, the additive genetic covariance 
between traits k and l is given by:

Gkl =
n∑
j=1

2pjqjαj(k)αj(l) +
n∑
j=1

n∑
x=1

[
2λjxαj(k)αx(l)

]
j�=x

� (10)

The dominance genetic variance, like the additive genetic variance, 
contains a component arising from allelic variation and a compo-
nent caused by linkage disequilibrium:

Dkk =
n∑
j=1

(2pjqjdj(k))
2
+

n∑
j=1

n∑
x=1

î
4λ2

jxdj(k)dx(k)
ó
j�=x

� (11)

Likewise for the dominance genetic covariance:

Dkl =
t∑

j=1

(2pjqj)
2dj(k)dj(l) +

n∑
j=1

n∑
x=1

î
4λ2

jxdj(k)dx(l)
ó
j�=x

� (12)

From these definitions for the additive genetic variances and covari-
ances, we can construct the additive genetic variance–covariance 
matrix:

G =



G11 · · · G1t

...
. . .

...

Gt1 · · · Gtt


� (13)

And the dominance genetic variance–covariance matrix:

D =



D11 · · · D1t

...
. . .

...

Dt1 · · · Dtt


� (14)

Because the full-sib genetic variance–covariance matrix estimated 
using the mixed model in the F3 population represents a mixture of 
additive and dominance components (see above), it is estimated as 
the sum ½ G + ¼ D from Equations 13 and 14. Because the G-matrix 
itself contains components arising from additive and dominance 
effects, we also calculated the additive genetic variance due to addi-
tive effects, Ga, and dominance effects, Gd, by setting the additive (aj) 
or dominance (dj) effects to zero.

Matrix Comparisons
To evaluate the quality of the matrix estimates, we compare the 
estimated covariance matrices using three complementary methods, 
which focus on different aspects of matrix structure. The random 
skewers method (Cheverud and Marroig 2007) summarizes the 
extent to which matrices are similar in the direction of their expected 
response to selection. This is done by multiplying the two matrices 
being compared by the same set of random selection gradients and 
taking the average of the vector correlations between the resulting 
expected response vectors. Significance of the random skewers com-
parison is calculated by comparing the observed vector correlation 
to the distribution of correlations from random vectors. The next 
method is a simple element-wise correlation of matrix elements, 
which can be used in correlation matrices as a measure of the simi-
larity in the pattern of association. The significance of the matrix 
correlation is calculated using the Mantel permutation method, 
which takes the nonindependence of the individual elements in the 
matrix into account. The Krzanowski correlation measures the con-
gruence of the spaces spanned by the first half of the eigenvectors of 
the matrices being compared. We do not calculate a significance in 
relation to the Krzanowski method. See Melo et al. (2015) for details 
on all these comparison methods.

Results

Growth Curves
Growth curves for the parental and F3 generation suggest an almost 
completely additive behavior of the weekly growths, with the F3 
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generation being intermediate between the two founders for most 
traits, except for the first week, in which the F3 generation is smaller 
than both founders (Figure 1A). Genetic correlations between 
growth periods are generally positive, except for a negative correla-
tion of −0.36 between growth in weeks 2 and 4. Larger correlations 
are present in later growth (around 0.3–0.4 in adjacent weeks and 
between weeks 4 and 6). Early growth shows a positive correlation 
between weeks 2 and 3. Most correlations between early and late 
growth are small, except for a .34 correlation between weeks 1 and 
5. There is also a small negative correlation between weeks 2 and 
6 (Figure 1B). In summary, during early growth, week 1 is mostly 
independent, weeks 2 and 3 are positively correlated; and during 
late growth, weeks 4–7 are positively correlated and somewhat inde-
pendent of early growth.

Selection and Divergence
The observed phenotypic divergence, the estimated selection gradi-
ent and the expected phenotypic divergence given this gradient are 
shown in Table 1 and Supplementary Figure S1. Vector correla-
tion between observed and expected phenotypic divergence is high 
(r = 0.93), indicating that the observed divergence is compatible with 
the expected divergence calculated  from selection and covariation 
in the F3.

QTL Mapping
We identified 32 putative QTL loci using our multivariate regression 
model with flanking markers. The position of the chosen markers 
is shown in Figure 2. Pleiotropic effect vectors were simultaneously 
estimated for all chosen markers and are shown in Figure 3. All 
markers show some degree of pleiotropy, affecting as few as 2 and 
as many as all 7 traits (Supplementary Figure S2). Additive effects 
are, in general, larger than dominance effects, and the total size of 
the effect vector was not related to the level of pleiotropy. A princi-
pal component analysis (PCA) of the marker effects reveals that the 
first two principal components of the additive effects (responsible 
for 71% of the variation) correspond to the early and late growth 
phase, suggesting two somewhat independent directions of variation 
in genetic effects. No such separation is visible in the dominance 

effects, but we can see a split in the loadings of PC1, with early and 
late traits taking on opposite signs (Figure 3C,D). In the dominance 
effects, the first 2 PCs account for 56% of the variation. When com-
paring the direction of the pleiotropic vectors with the direction of 
phenotypic divergence, the mean additive vector is very aligned with 
divergence (vector correlation of 0.96), whereas the mean domi-
nance vector is unaligned (vector correlation of 0.11). Additionally, 
we see a significant relation between the norm of the individual addi-
tive vectors and their alignment with divergence and the selection 
gradient: larger pleiotropic vectors being more aligned with both 
(alignment with divergence, slope = 1.73, P = 0.002; alignment with 
selection gradient, slope = 1.69, P = 0.005, Figure 4A,C). No such 
relation is present in the dominance vectors (alignment with diver-
gence, slope = −0.40, P = 0.67; Alignment with selection gradient, 
slope = −0.36, P = 0.66, Figure 4B,D).

Genome Prediction
Genome prediction produces pleiotropic effect vectors for all mark-
ers (Figure 5). We again see a widespread pattern of pleiotropy, but 
less so than in the mapped effects, as several of the large effect 
vectors have effects in only 1 or 2 traits. This is especially evident 
in the dominance effects. The PCA plot of marker effects confirms 
this, as the first 2 PCs are not related to early and late growth, as 
in the mapped markers, but combinations of single trait effects. 
We can also see the pattern of linkage affecting the pleiotropic 
vectors, as larger effects are often clustered and similar, suggesting 
that the regularization shrinkage prior was unable to pick a single 
marker as the best position for the effect, spreading the putative 
QTL over several neighboring markers [this is a known limita-
tion of this type of sparsity inducing regression, see Piironen and 
Vehtari (2017)]. We can also see the pattern that larger additive 
effect vectors are more aligned with phenotypic divergence. Small 
effects, which where shrunken toward zero by the horseshoe prior, 
are essentially pointing in random directions, while larger additive 
vectors are more aligned with divergence and selection (alignment 
with divergence, slope  =  2.42, P  <  0.001; alignment with selec-
tion gradient, slope = 1.75, P < 0.001, Figure 6A,C). Dominance 
vectors again don’t have any pattern between magnitude and 
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Figure 1.  Growth curves. (A) Weekly growth for the founders (large shown in the top line [green], and small in the lower line [blue]) and the F3 generations 
(middle line, red). In most growth periods, the F3 generation is between the two founders. (B) Genetic correlations from the full-sib genetic matrix in the 
F3 generation. Smaller correlations are more transparent and corresponding ellipses less eccentric, larger correlations are more opaque and ellipses more 
eccentric. Positive correlations in blue and negative correlations in red.
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alignment (alignment with divergence, slope  =  −2.01, P  =  0.09; 
alignment with selection gradient, slope = −2.14, P = 0.08, Figure 
6B,D).

Ancestral Predictions
Both regression models do well at predicting the phenotypes of the 
founder strains using only genetic effects estimated from the F3 gen-
eration (Figure 7). The genome prediction method is slightly better 
on the average prediction, but most ancestral growth periods are 
inside the posterior distribution (gray lines) for both models. First 
week of growth is somewhat anomalous in that the F3 generation is 
not intermediate to the two founders, possibly due to environmental 
effects, and so the prediction is poor. Growth in week 4 in the large 
strain is larger than predicted from the F3 genetic effects, suggesting 
either nondetected effects in the F3 or some other nonadditive genetic 

or environmental effects. The same applies to the week 7 growth, 
where both large and small strains are more different from the F3 
then expected from the F3 additive effects.

Covariance Matrix Predictions
Genetic correlation matrices estimated from the pleiotropic effects 
from the mapped markers are broadly similar to the family level 
full-sib genetic matrix estimated from the mixed model fit. We can 
see the same strong correlation between late growth, and the posi-
tive correlation between weeks 2 and 3.  The negative correlation 
between weeks 2 and 4 is present, but much smaller in magnitude 
in the QTL estimated matrix. The smallest correlations are between 
the early and late traits. Regressing the full-sib genetic matrix onto 
the genetic covariances predicted from the mapped markers (given 
by the sum of half the additive genetic matrix with one quarter of 

Table 1.  Vectors of phenotypic divergence, estimated selection gradient in the F3, and expected divergence given the estimated selection

Week interval Observed divergence (g) ∆z Estimated selection gradient (scaled) Expected phenotypic divergence

Week 1–2 0.475 3.336 1.221
Week 2–3 1.455 7.377 2.823
Week 3–4 4.610 7.666 3.986
Week 4–5 5.220 6.146 3.947
Week 5–6 2.230 6.606 3.178
Week 6–7 0.685 5.982 2.348
Week 7–8 1.575 4.323 1.494

Figure 2.  Identified makers using interval mapping with various flanking marker distances. Chosen markers are shown as gray vertical lines. Significant markers 
at the chromosome levels are shown in full color, nonsignificant markers at the chromosome level are translucent, the dashed line marks the whole genome 
significance threshold. Chromosomes are shown in alternating colors.
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the dominance genetic matrix) reveals that the observed covariances 
are in general much larger than the predicted ones, but the pattern 
of covariances is similar (intercept = −0.01, slope = 2.43, P < 0.001). 
The outliers in the regression are the negative covariance between 
weeks 2 and 4 and the much larger observed variance in week 4. This 
is not surprising, since the full-sib genetic includes other sources of 
covariation, like maternal and common environmental effects. The 
genome prediction fared much worse, predicting variances and 

covariances close to zero for almost all traits (Supplementary Figure 
S3). Matrix comparisons can be seen in Table 2. The most similar 
matrices are the QTL mapping maker genetic matrix, followed by 
the QTL mapping marker additive genetic matrix. Both show high 
similarities in random skewers, Mantel matrix correlation, and a 
high proportion of shared subspace. The dominance matrix shows a 
relatively low matrix correlation and the lowest Krzanowski shared 
subspace correlation, suggesting it is different in structure to the 

Figure 3.  Pleiotropic effects of identified markers. (A) additive and (B) dominance contributions of the trait components to the final length of the pleiotropic 
vector. All trait contributions are scaled to trait standard deviation and are comparable. (C) additive and (D) (dominance): PCA of marker effects, arrows represent 
trait loadings in PC 1 and 2, marker IDs in gray are marker scores in PC 1 and 2. Markers are coded as chromosome and marker within chromosome, see 
Supplementary Material for genomic position.
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full-sib genetic matrix. Genome prediction matrices have very low, 
nonsignificant Mantel correlation values, reflecting the poor estimate 
of the G-matrix correlations. Random skewers comparisons are all 
relatively high and significant, with the exception of the genome pre-
diction dominance matrix. This can be due to a relatively similar first 
principal component in all matrices.

Discussion

The interaction between selection and multivariate covariation is a 
central part of our understanding of evolution. Even simple selection 
regimes can produce complex multivariate responses due to cascad-
ing developmental effects and genetic constraints. Here, we use a 
cross between two artificially selected lines of mice to investigate 
the genetic architecture of the multivariate response due to artifi-
cial selection. The target of selection in both lines was individual 
final weight, in opposite directions, and we use the various phases of 
growth as a model of a multivariate trait altered by selection. Using 
multivariate QTL mapping and genomic regression, we were able to 
map loci involved in the variation of growth and to simultaneously 
estimate vectors of genetic effects responsible for the variation in 
growth. Combining these effect vectors with quantitative genetics 
theory, we were able to directly link the pattern of pleiotropy and the 
genetic covariation of these traits.

As expected by the behavior of the phenotypes in the cross 
(Cheverud et al. 1996), most of the divergence between large and 
small is due to additive effects. The mean additive effect vector is 
practically collinear with the direction of divergence between lines, 
and we see a relation between the total size of the additive effects and 
the alignment with selection and divergence. This relation between 
alignment and size reflects the effect of selection removing large 
effects in other directions, that is, the larger the pleiotropic effect 
the more it must conform to the direction of selection to be main-
tained, while smaller effects can be less aligned with selection and 

still contribute to the divergence between lines. This clear alignment 
is absent from the dominance effect vectors, as the mean dominance 
vector has a low correlation with the phenotypic divergence and the 
direction of selection, and the size of the individual marker effects 
also has no bearing on their alignment to divergence and selection. 
Dominance vectors are not expected to contribute to the phenotypic 
divergence, since they are an interaction effect between alleles from 
the two founder lines, and so are only present in the crosses. These 
relations between effect size and alignment are present in both QTL 
mapping and genome prediction estimates of the additive and domi-
nance effect vectors, but in the genome prediction the relations are 
much less clear when we look at the very small vectors. These small 
effect vectors are distributed in all directions but have very small 
norms (which is a measure of the overall effect of the locus across 
traits). Presumably, this is indicative that they have a negligible effect 
on the phenotype and are being shrunk to zero by the regularizing 
regression priors, and so the individual vector directions are essen-
tially random.

Ancestral predictions using QTL mapping is surprisingly accu-
rate, and most of the ancestral traits are within the posterior dis-
tribution of ancestral estimates, even though we are using only a 
small number of large effect QTL in the prediction model. The 
genome prediction analysis using sparse regression, on the other 
hand, is potentially including a number of small effects that do not 
meet a significance threshold, and so are excluded from the QTL 
mapping analysis. The inclusion of these many small effects have 
been proposed as a solution to the missing heritability problem 
(Bloom et al. 2013), and modern sparse regression and genomic 
prediction methods provide a promising framework for working 
with high density marker datasets (Pong-Wong 2014). Indeed, the 
sparse regression produces very good out-of-sample predictive 
performance when used to predict the phenotypes of the founder 
lines (Figure 7). Mapping could also be done in this sparse regres-
sion framework using variable selection, and the model displays 

Figure 4.  Size and alignment for chosen markers. Pleiotropic effect vector alignment with selection and divergence between founders. Panels A and B show the 
relation between pleiotropic effect vector norm and alignment to estimated selection gradient (β), while panels C and D show the relation between pleiotropic 
effect vector norm and alignment to phenotypic divergence. (A and C) additive effects; (B and D) dominance effects.
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reasonable agreement with the QTL mapping, producing large 
effect estimates that are close to the detected QTL (Figure 5). 
Furthermore, our analysis was done in standard generic Bayesian 
model fitting software (admittedly this was only possible since our 
maker data set is relatively small, but further advances in general 
statistical software should make using similar approaches in larger 
datasets possible). QTL mapping, on the other hand, provides us 
with a small set of interpretable pleiotropic vectors, which capture 
the modular aspects of early and late development, and can be 
used to understand the pattern of covariation that we see in the 

G-matrix. While the inclusion of all the marker helps with the 
ancestral prediction and uses effects that are ignored by the QTL 
mapping, using all of the markers for the estimation of expected 
covariances seems to be much more susceptible to noise introduced 
by small effect markers than the mean ancestral predictions, and 
the marker estimated variances and covariances using genome pre-
diction are all close to zero. Some sort of variable selection would 
be necessary to make this estimate reliable using the genome pre-
diction estimates. We do not pursue this further, but presumably 
even gradual removal of small effects would improve this estimate.

Figure 5.  Regularized pleiotropic effects of all markers. (A) additive and (B) dominance contributions of the trait components to the final length of the pleiotropic 
vector. Significant markers in the QTL mapping are marked by the red dots. All trait contributions are scaled to trait standard deviation and are comparable. (C) 
Additive and (D) dominance PCA of marker effects, arrows represent trait loadings in PC1 and PC2, marker IDs in gray are marker scores in PC 1 and 2.
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Using the pleiotropic effect vectors estimated in the QTL map-
ping analysis and quantitative genetics theory (Kelly 2009), we 
were able to construct expected additive and dominance genetic 
covariance matrices. The additive marker matrix is broadly similar 
to the observed full-sib genetic matrix, with strong positive correla-
tions between the late traits, a strong correlation between weeks 2 
and 3, and weaker correlations between early and late traits. The 

dominance matrix is different, with weak positive correlations 
within early and late traits and negative correlations between them. 
This clean separation between additive and dominance components 
of the G-matrix is difficult to achieve using only breeding experi-
ments, and underscores how different these genetic effects can 
potentially be. The difference in the patterns of additive and domi-
nance covariation suggests that these patterns have considerable 

Figure 6.  Regularized pleiotropic effect vector alignment with selection gradient and divergence between founders. Panels A and B show the relation between 
regularized pleiotropic effect vector norm and alignment to estimated selection gradient (β), while panels C and D show the relation between pleiotropic effect 
vector norm and alignment to phenotypic divergence. (A and C) additive effects; (B and D) dominance effects.

Figure 7.  Ancestral predictions from additive effects. Predictions of the ancestral growth curves using additive effects estimated in the F3 generation. Solid lines 
are the observed growth curves, dashed lines the predicted growth curves from the 2 models. (A) QTL mapping of significant markers, (B) Genome prediction 
using all markers. Gray lines represent the posterior distribution of ancestral predictions derived from the Bayesian effect estimates.
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latitude to vary and do not arise from a fundamental property of 
the system. If all gene effects on growth were constrained (i.e., 
the possible pattern of their effects were limited) by some set of 
developmental pathways, we would expect all sources of genetic 
covariation to share a similar pattern, reflecting the developmental 
constraints. (For example, a trade-off could restrict a locus with 
positive effects on trait A to have negative effects on trait B regard-
less of the effects being additive or dominant). The genetic matrix, 
composed of a one-half the additive matrix plus one-quarter the 
dominance matrix is similar to the full-sib matrix, but with smaller 
variances throughout. The negative correlation between weeks 
2 and 4 is present, but not significant, in the marker estimated 
matrix (Figure 8C). Given that our maker-based estimates does 
not include several components that are expected to contribute to 
the genetic matrix, like shared environment and maternal effects, 
it is not surprising that the marker estimated variances are smaller 
than the observed genetic covariances. The smaller variances and 
covariances in the QTL mapping maker-based genetic matrix can 
also be attributed to the inclusion of only part of the direct genetic 
effects, since only loci with larger effects are used. Nevertheless, the 
general structure of the full-sib genetic matrix is captured by the 
expected covariance due to pleiotropy and linkage of the mapped 
loci, as we can see in the high values of matrix similarity and in 
Figure 8. The success in predicting the pattern covariation directly 
from pleiotropic effects underscores the importance of pleiotropy 
in determining genetic covariation, and suggests that a relatively 
small number of medium and large effect loci can be responsible 
for a large portion of the genetic constraints (which are captured 
in the pattern of trait covariation). Another possibility is that the 
distribution of pleiotropic effects is shared between small and large 
effects, either due to mutation, selection bias, or both. This shared 
distribution would explain why the general pattern of covariation, 
but not the total amount, is successfully predicted from a small 
number of markers.

The distribution of pleiotropic effects in the QTL mapping analy-
sis offers some insights into the genetic architecture of growth. First, 
we see that the full distribution of additive pleiotropic effects spans 
a modular variational space, with independent principal components 
aligned with the two stages of growth, early and late. This is some-
what unexpected given that the vector of selection on growth was in 
the direction of coordinated change in all phases of growth (Table 1), 
either increasing or decreasing the target of selection, week 9 weight. 

Given this target of selection, we would expect the distribution of 
the additive effects responsible for the divergence between large and 
small to be wholly aligned with the coordinated change of all growth 
phases, either increasing or decreasing all phases of growth. Indeed, 
on average, the additive effects are aligned with divergence, and 
large effects more so, but we still maintain a number of pleiotropic 
vectors with antagonistic effects in both phases, either increasing 
early traits and decreasing late traits or vice-versa (markers on the 
top-left and bottom-right quadrant of Figure 3C). The maintenance 
of this modular variation in pleiotropic effects could be associated 
with developmental or mutational constraints that limit the possi-
ble patterns of additive genetic effects. But, if this were the case, 
we might expect the dominance effects, which are not shaped by 
the selective history of the founders, to have a similar modular pat-
tern. While the dominance effects PCA does not show the same clear 
early-late separation in orthogonal directions that we see in the addi-
tive effects, the dominance genetic matrix has a different distinction 
between early and late, with positive correlations within each phase 
and negative correlations between. So perhaps the modular aspect of 
the genetic effects can manifest in different ways. Additionally, the 
variational modularity between early and late growth that we see 
in the G-matrix is not only due to markers having modular effects, 
restricted to one stage of growth or another (markers close to the x 
and y axis in Figure 3C), but is also due to a combination of mark-
ers that have general effects in both stages (markers along the main 
diagonal, in top-right and bottom-left quadrants in Figure 3C) or the 
previously mentioned markers with antagonist effect in both stages. 
This reinforces the idea that there are several genotype–phenotype 
maps that can generate a modular covariance matrix (Pavlicev and 
Hansen 2011). However, several studies have found very low lev-
els of antagonistic pleiotropy and many more modular pleiotropic 
effects in morphological traits (Leamy et  al. 1999, 2002; Kenney-
Hunt et al. 2008), suggesting that perhaps the specific genetic archi-
tecture underlying modularity could vary depending on the type of 
trait and on its evolutionary history. It is also possible that these pat-
terns actually reflect some contribution of LD, since we are unable 
to reliably distinguish pleiotropy from LD because of the limited 
level of recombination in an F3 population. Therefore, application of 
our framework to an advanced intercross population or an outbred 
population would potentially provide even stronger insights because 
the lower levels of LD would allow for the clear separation of LD 
from pleiotropy.

Table 2.  Matrix comparisons of the QTL mapping and genome prediction marker-based matrices with the estimated full-sib genetic via 
random skewers, Mantel correlation, and Krzanowski shared subspace correlation

Matrix Similarity to family full-sib genetic matrix

Random skewers Mantel correlation Krzanowski correlation

QTL mapping marker 0.872 (P < 0.001) 0.69 (P < 0.001) 0.86
Additive genetic matrix    
QTL mapping marker 0.85 (P = 0.005) 0.49 (P = 0.01) 0.62
Dominance genetic matrix    
QTL mapping marker 0.89 (P < 0.001) 0.70 (P = 0.002) 0.86
Genetic matrix (½ G + ¼ D)    
Genome prediction marker 0.82 (P = 0.007) 0.09 (P = 0.28) 0.78
Additive genetic matrix    
Genome prediction marker 0.6 (P = 0.057) 0.20 (P = 0.16) 0.40
Dominance genetic matrix    
Genome prediction marker 0.83 (P = 0.002) 0.12 (P = 0.29) 0.77
Genetic matrix (½ G + ¼ D)    
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The explicit link between genetic effects and covariation is a 
natural way to study multivariate evolution, but still rare in the 
literature (Kelly 2009). Using this approach, we were able to 
decompose the full-sib genetic matrix into its additive and domi-
nance components. These components show different patterns of 
covariation, a consequence of the differences in the additive and 
dominance distributions of pleiotropic effects. While both classes 
of genetic effects show some signal of the division between early 
and late growth, the modular pattern is much more obvious in 
the additive effects. The full-sib covariance matrix, a common 
proxy for the additive genetic covariance matrix, is similar to 
the purely additive genetic matrix, but could differ more depend-
ing on the dominance component. Furthermore, we were able to 

accurately reconstruct the ancestral states in the founders using 
only the effects estimated in the F3 population, and this prediction 
was improved using all the markers in a sparse genome prediction 
model.

Supplementary Material

Supplementary material is available at Journal of Heredity online.
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