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Modularity is a central concept in modern biology, providing a
powerful framework for the study of living organisms on many
organizational levels. Two central and related questions can be
posed in regard to modularity: How does modularity appear in the
first place, and what forces are responsible for keeping and/or
changing modular patterns? We approached these questions using
a quantitative genetics simulation framework, building on pre-
vious results obtained with bivariate systems and extending them
to multivariate systems. We developed an individual-based model
capable of simulating many traits controlled by many loci with
variable pleiotropic relations between them, expressed in pop-
ulations subject to mutation, recombination, drift, and selection.
We used this model to study the problem of the emergence of
modularity, and hereby show that drift and stabilizing selection
are inefficient at creating modular variational structures. We also
demonstrate that directional selection can have marked effects on
the modular structure between traits, actively promoting a restruc-
turing of genetic variation in the selected population and poten-
tially facilitating the response to selection. Furthermore, we give
examples of complex covariation created by simple regimes of
combined directional and stabilizing selection and show that
stabilizing selection is important in the maintenance of established
covariation patterns. Our results are in full agreement with pre-
vious results for two-trait systems and further extend them to
include scenarios of greater complexity. Finally, we discuss the
evolutionary consequences of modular patterns being molded by
directional selection.

variational modularity | G-matrix | quantitative genetics | pleiotropy |
phenotypic correlations

Modularity, the organizational pattern found in many or-
ganisms, can be defined as the tendency for some parts

to be more associated with each other than with other parts
of the same organism. This type of modular organization can
manifest at many levels, for example, between the bases of an
RNA molecule (1), in the interaction between proteins (2), or in
the covariance structure of continuous morphological traits (3).
In each case, the type of association is different, but the modular
pattern remains (4). Traits measured on a continuous scale that
covary with each other can frequently be divided into variational
modules. A variational module is characterized by higher cor-
relations between traits in the same module and lower correla-
tions between traits of different modules.
Modularity is an important concept in understanding the evo-

lution of many biological systems. At the individual level, tension
in producing a full, coherent organism, and having each of its
parts performing a separate task subject to different selective
pressures and requirements, shapes the association between traits
(5). At the same time, the existing pattern of association also
influences the response to a given selective pressure: Traits that
are associated tend to change together (6, 7). The evolutionary
consequences of these correlations are twofold. On the one hand,
traits that perform a common function will tend to change in an
orchestrated fashion, although interfering less with traits in other
modules at the same time. On the other hand, if natural selection

promotes changes in only one trait of a module, the other traits
within this module will suffer an indirect selection pressure and
change as well, even if this response leads to lower fitness (8). This
indirect response in other traits is due to their genetic correlation
with the selected trait. Understanding how traits become associated,
or correlated, is therefore a central question in evolutionary biology.
The question of how modular patterns evolve in each level of

complexity is still open to intense scrutiny (9–11). In morpho-
logical systems, one condition for the evolution of variational
pattern is the existence of genetic variation in the association
between traits in a population. Pavlicev et al. (12) have presented
empirical evidence of this variation by showing the existence of
relationship quantitative trait loci (rQTLs). These rQTLs are
genomic regions that show variation in epistatic effects, altering
pleiotropic relations and the correlation between phenotypic
traits. Using this concept and the multivariate breeder’s equa-
tion, Pavlicev et al. (13) proposed a simple deterministic model
for the evolution of association or dissociation between two traits
in response to directional and stabilizing selection.
The variational pattern of genetic associations between con-

tinuous morphological traits is expressed in the additive genetic
covariance matrix, called the G-matrix (8, 14). Covariance ex-
pressed in the G-matrix is the result of the sum and interaction
of genetic effects on many traits, such as pleiotropic and epistatic
effects, and shared development, leading to heritable variation
and covariation. This variation interacts with evolutionary pro-
cesses, such as drift and selection. The multivariate breeder’s
equation relates a population’s G-matrix with its response to a
given directional selection pressure (14). Under certain conditions,
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mainly the stability of the G-matrix over many generations, we
may use this equation to infer the net selection pressures re-
sponsible for a given differentiation between populations (15).
So, the question of stability of the G-matrix under different
conditions is relevant for understanding natural diversification
of populations and species. A sequence of articles by Jones et al.
(15–18) investigates this problem using stochastic individual-
based computer simulations under various conditions, including
directional and stabilizing selection, drift, and mutation. How-
ever, these articles focus on two traits, mostly using a stable
mutation correlation matrix (a proxy of the pleiotropic/epistatic
relations), except in two articles (17, 18). Jones et al. (17, 18)
show that stabilizing selection is capable of creating and main-
taining an association between two quantitative traits by influ-
encing the mutation correlation matrix of the populations. If the
correlation matrix for mutational effects is kept constant, its
alignment with stabilizing selection will also maintain the cor-
relation between two traits (16). In addition, correlated di-
rectional selection can help maintain stable associations when
aligned with variation in the population and the mutation cor-
relation matrix (15).
These results give valuable insight into the problem of the

evolution of modularity. However, investigating the two-trait
case with a stable developmental scheme can be limiting when
we are interested in the evolution of modularity. With two traits,
complex modular relationships cannot arise, and without a
changing genotype-to-phenotype map, no substantial change can
occur in the heritable variation pattern. Although some articles
investigate more than two traits (19) or an evolving mutation
matrix (17, 18), to the best of our knowledge, no effort has been
made to combine these two complications. We attempt to fill this
gap, presenting a model capable of simulating many traits con-
trolled by many loci with variable relations between them,
expressed in populations subject to mutation, recombination,
drift, and selection (Fig. 1). We use this model to study the
problem of emergence of modularity in a system with 10 contin-
uous phenotypic traits divided into two potential variational
modules composed of five traits, as well as the interaction between

covariation patterns and selection. To facilitate comparison with
existing observational data, we focus on phenotypic covariance
matrices, not genetic ones. Phenotypic matrices are much easier to
measure, and G-matrix estimates are frequently impossible to ob-
tain. Here, they are proportional, and because phenotypic matrices
include environmental noise, phenotypic module detection is a
stricter test for modularity in our simulations.

Results
Initial Population. Our first step was to establish a baseline pop-
ulation after a long burn-in period to serve as a starting point for
all populations. We generated a random population, described in
SI Appendix, and subjected it to 10,000 generations of random
genetic drift without selection. Then, the same population was
subjected to 10,000 generations of uncorrelated stabilizing selec-
tion with a diagonal selection surface covariance matrix and a
stable peak. We also performed a subset of the simulations with
random initial populations, repeating the burn-in periods of drift
and stabilizing selection for each population to assess whether the
results were sensitive to the starting populations, and no such ef-
fect was found (SI Appendix, Figs. S5 and S6). Because this burn-in
period adds considerable computational time (a factor of 3), we
opted to use the same starting population for all simulations.

Random Genetic Drift. After the burn-in period, we removed the
selection on the populations, subjecting them to random drift. This
procedure is essentially a null test to verify that the absence of
selection would not lead to the kind of modular organization found
in the simulations discussed below. We ran 50 replicates of 10,000
generations of drift, and no modular pattern consistent with our
modularity hypothesis was established by genetic drift alone, as
seen in the ratio of within- and between-module average pheno-
typic correlations [average ratio (AVG Ratio); Materials and
Methods and SI Appendix, Fig. S2]. At the end of 10,000 gen-
erations, the highest observed value for the AVGRatio was around
1.1, with most values falling closer to 1 or less. This value indicates
no differentiation in the average values of correlations within and
between modules, and no evidence of variational modularity.

Stabilizing Selection. Starting with the same initial population, we
ran 50 runs of correlated stabilizing selection, using a non-
diagonal selection surface covariance matrix, with a correlation
of 0.8 within modules (traits 1–5 and 6–10) and zero between
modules and a variance of 10 for all modules, which corresponds
to strong stabilizing selection (SI Appendix, Figs. S8 and S9). A
slight modular pattern was established over the experimental
runs, and at the end of 10,000 generations, most populations
maintained AVG Ratios over 1.0 and many were in the range of
1.1–1.2 (SI Appendix, Fig. S2).

Divergent Directional Selection. To investigate the effect of di-
rectional selection, we subjected the populations to divergent
directional selection on all traits. We imposed changes in the
selection surface peak at a fixed rate per generation, causing the
mean of the population to be dislocated from the peak and,
consequently, to experience directional selection. These changes
ranged from very weak to moderate but were sustained for many
generations, causing significant morphological differences. Traits
1–5, in the first module, were subjected to selection in one di-
rection, toward negative trait values. Accordingly, traits 6–10, in
the second module, were subjected to directional selection in the
other direction, toward positive trait values. All populations
responded to directional selection with changes in their means.
When under divergent directional selection of sufficient strength,

the between-module phenotypic correlation dropped to nearly 0 and
the within-module correlation rose (Fig. 2 and SI Appendix, Fig. S3).
Stronger selection led to more differentiation between modules.
In addition to the AVG Ratio, changes in the eigenvalue structure

Fig. 1. Pictorial representation of the simulation scheme. Dynamics for a sin-
gle individual in the population. In this example, two loci (y, m= 2) control the
additive values for two traits (x, p=2), with the pleiotropic B matrix con-
necting these two levels. To obtain the phenotype (z), additive values are
added to Gaussian noise (e). Phenotypic values are then used to attribute
a fitness to each individual, according to a Gaussian selection surface defined
by the peak θ and covariance matrix ω. Mating pairs are sampled with
a probability proportional to their fitness, and gametes formed by sampling
one allele from each locus, along with their pleiotropic effects expressed in the
Bmatrix. Mutation can alter the values of each element of ywith probability μ
by an amount drawn from a Gaussian distribution with a mean of 0 and
variance σ; and mutation can also add or remove arrows connecting y to the
additive values in xwith probability μB. Mutation acts before the formation of
gametes but after selection.
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of the population’s phenotypic covariance matrices showed an
increase in variation associated with the second eigenvector,
a contrast between modules (Fig. 2 and SI Appendix, Fig. S4
and Table S1).
Divergent directional selection efficiently created a modular

variational structure in the populations. Even weak selection,
peak movement on the order of 0.0005 SDs per trait per gener-
ation, was capable of creating detectable variational modularity
after 10,000 generations. For larger peak movements, the effect
was even quicker.
We can also use directional autonomy (sensu ref. 20) as a

measure of variation in the direction of selection. Directional
selection causes an increase in phenotypic (and genetic) variance
associated with each module (Fig. 2).

Corridor Directional Selection. Although divergent directional se-
lection is efficient at creating modular covariation patterns, selec-
tion acting simultaneously on all traits in a morphological structure
in diverging directions is not a plausible scenario. A more realistic
model is referred to as the “corridor model” of selection (21),
where some traits undergo correlated directional selection but
others are subject to stabilizing selection. In other words, corridor
selection causes one set of traits to increase (or decrease) in size
while keeping the rest constant.
In simulations of this scenario, the module under directional

selection becomes much more integrated, while the module under
stabilizing selection displays a slight increase in its correlations
(Fig. 3). The between-module correlations fall, but not at the same
rate as in the case of divergent directional selection. Corridor
directional selection creates three correlation classes: high within-
module correlations in the module under directional selection,
intermediate within-module correlations in the module under
stabilizing selection, and low correlations between modules, and it
shows that simple selection regimes can create complex variational
patterns.

Maintaining Modular Patterns. We also investigated what happens
to modular patterns established by directional selection under three
scenarios: drift, uncorrelated stabilizing selection, and correlated
stabilizing selection. We took a single population subjected to
strong divergent directional selection and used it as the starting
point for 100 populations under each of these regimes. By mea-
suring AVG Ratios over 10,000 generations (Fig. 4), we see that

Fig. 2. Populations under divergent directional selection. (A) Ratio of average within- and between-module phenotypic correlations (AVG Ratio) under in-
creasing correlated peak movement rate. The AVG Ratio increases with peak movement rate, indicating more differentiation of within- and between-module
correlations. Variance of the AVG Ratio within populations for a given peak movement rate increases with the rate because between-module correlations get
progressively smaller, leading to a divergence in AVG Ratio. (B) Percentage of variation explained by each eigenvalue. Each color represents an eigenvalue,
ordered from top to bottom. As the divergent peak movement rate increases, variation associated with dissociation between modules increases (the second
principal component, a contrast between modules; SI Appendix). (C) Mean and directional autonomy for various peak movement rates. Directional autonomy is
measured in the direction of each module. Mean autonomy is an average using 1,000 random vectors in all directions. As the peak movement rate increases,
directional autonomy rises, indicating more variation in the direction of selection. All plot points show mean values, and error bars span 2.5% and 97.5%
quantiles for 10 populations under each peak movement rate, after 10,000 generations (population size Ne = 5,000, per locus mutation rate μ= 5×10−4,
pleiotropic effects mutation rate μB = 10−4, number of traits p=10, number of loci m= 500, per locus mutation variance σ= 0:02, environmental variance
Ve = 0:8, selection surface variance Vω = 10, selection surface within-module correlation rω = 0:8, rate of peak movement per generation Δθ = 0:0001− 0:004).

Fig. 3. Average correlation within and between modules under corridor
selection. Faster peak movement promotes a higher differential between
correlations in each group. Traits under directional selection become more
correlated, whereas traits under stabilizing selection maintain the initial
mean correlation. Between-module correlations fall proportional to peak move-
ment rate. Points are mean values, and error bars span 2.5% and 97.5%
quantiles for 10 populations under each peak movement rate after 10,000
generations. Parameter values are as in Fig. 2.

472 | www.pnas.org/cgi/doi/10.1073/pnas.1322632112 Melo and Marroig

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

A
ug

us
t 1

2,
 2

02
1 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1322632112/-/DCSupplemental/pnas.1322632112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1322632112/-/DCSupplemental/pnas.1322632112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1322632112/-/DCSupplemental/pnas.1322632112.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1322632112


drift replicates quickly lose any trace of the strong modular pattern
present in the initial population, whereas correlated stabilizing
selection maintains and even increases the difference in between-
and within-module correlations. Uncorrelated stabilizing selection
allows a partial loss of modularity but could still maintain a mod-
ular pattern for many generations.

Discussion
We describe a model capable of simulating the evolution of a
large number of quantitative traits based on an explicit genetic
architecture. To our knowledge, our model is the first non-
deterministic, individual-based model capable of incorporating
many traits, large populations, mutation, drift, selection, and a
variable heritable pleiotropic pattern. This complexity allows us
to investigate the effect of different evolutionary processes,
ranging from random genetic drift to several types of selection,
such as stabilizing (correlated and independent) and directional
selection (divergent and corridor).
Modularity has been associated with robustness (in the sense of

resistance to perturbations) (22, 23) and evolutionary potential in
biological systems, providing a genetic architecture that enables
change to occur in parts of the organism without affecting other
parts. The relationship between modularity, function, and de-
velopment, as raised by the classic morphological integration hy-
pothesis (5), suggests that selection should have considerable
influence in creating the modular patterns we observe in nature
(4). Even so, this hypothesis is controversial and difficult to test
directly (24). We show that directional selection is a prime can-
didate for the engine behind the evolution of variational modu-
larity, whereas stabilizing selection is critical for its maintenance.
Our results suggest that drift is incapable of producing or

maintaining variational modular structures for many genera-
tions, even at the relatively large population sizes used (5,000
individuals). Furthermore, when drift produces modularity in
one particular lineage at any given time, this pattern would not

be shared with other lineages and would be rapidly lost within
that lineage. Stabilizing selection induces weak modularity in
populations and provides more stability in these patterns compared
with genetic drift.
The inability of stabilizing selection to create marked modular

patterns in high dimensionality might seem unexpected, given
that it has been shown to be effective in doing so for two-trait
systems (17, 18). These results are in no way incompatible, and
this agreement becomes more intuitive when we realize that the
between-module correlations are not under selection and that
this opposition of selected within-module correlations and neutral
between-module correlations is only possible with more than two
traits. Under correlated stabilizing selection, there is no advantage
to low between-module correlations. This lack of advantage
reduces the efficacy of stabilizing selection in creating variational
modularity because it must rely solely on increasing within-module
correlations. Directional selection, on the other hand, has
a marked effect on the correlation between modules. Traits under
directional selection in the same direction tend to become cor-
related, and traits under divergent selection tend to become un-
correlated. In other words, directional selection acts directly on
the means of the traits and indirectly on the pleiotropic structures
governing these traits (represented here by the B matrix; Materials
and Methods), changing their pleiotropic behavior. Associations
and constraints in the pleiotropic matrix are created and removed
by directional selection, and this change in pleiotropic relations
allows populations to respond efficiently to directional selection.
We also show how directional selection on just a few traits (cor-
ridor selection) can create complex patterns of modularity.
Moreover, we show that stabilizing selection is essential for

maintaining an established pattern of modularity, with correlated
stabilizing selection performing this role efficiently. Correlated
stabilizing selection can have many different causes, such as the
necessity for cohesion among parts within an organism that im-
pose selection on the associations between traits (3, 25, 26) or
environmental and functional restrictions that also lead to sta-
bilizing selection on the relations between traits. For example,
the upper jaw and lower jaw must be the same size to allow proper
mastication (26, 27). Directional selection acts on the variation
maintained by these internal and external processes. The response
to selection is affected by the pattern of covariation, because
indirect selection, caused by genetic correlation between traits,
deviates the phenotypic response to selection from the direction of
the selection gradient (14, 26). At the same time, directional se-
lection can, as we have shown here, also change the variational
patterns dramatically, molding genetic covariation. Jones et al. (18)
recently showed that epistatic relations can allow selection to favor
mutations that align with the selection surface matrix for two traits.
The authors argue that this finding implies mutations need not be
neutral with respect to fitness but can be biased by previous se-
lective history. Additionally, correlated directional selection has
been implicated as a stabilizing force for G-matrices, but only when
the direction of selection is aligned with variation in the population
(15). In deterministic models, Pavlicev et al. (13) showed that
correlated directional selection can cause indirect selection for an
increase in correlation in two traits. We extend these results,
showing that in the presence of variable pleiotropy, directional
selection can realign a population’s variance structure in the di-
rection that facilitates a response to selection. Our results are
unique in that we are able to explore these effects and gain valu-
able insight into systems with many dimensions while also allowing
for novel interpretations of existing measurements of covariation.
The rapid evolution displayed by the covariation matrices in

our simulations raises interesting questions compared with em-
pirical measurements of phenotypic covariance matrices. There
are reports of rapid divergence of G-matrices in some instances,
for example, life history traits in nematodes (28) and pigmen-
tation and physical dimensions in isopods (29). As for continuous

Fig. 4. AVG Ratio under drift and uncorrelated and correlated stabilizing se-
lection. The initial population had undergone divergent directional selection, so
all populations start from a highly modular pattern. Mean values and 95%
confidence intervals for 100 populations under each regime are given. Pop-
ulations under drift quickly lose any modularity, whereas populations under
stabilizing selection are able to maintain it for many generations. On average,
correlated stabilizing selection maintains modularity at the same level estab-
lished by directional selection, whereas under uncorrelated stabilizing selection,
modularity decays to a lower level. Parameter values are as in Fig. 2, and
Δθ = 0:004 for the initial population.
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morphological traits, previous extensive comparative studies in
the mammalian skull (30) indicate remarkable stability in the
patterns of phenotypic and genetic (when available) covariation
in the mammalian skull, despite extensive divergence in average
phenotypes. These results suggest that shared function and de-
velopment impose an internal stabilizing selection (5, 26) that
plays a key role in keeping covariance structure stable across the
mammalian radiation. Our results confirm this finding and re-
inforce the importance of stabilizing selection for the mainte-
nance of covariance patterns. At the same time, the level of
integration, measured by the average squared phenotypic
correlation between all traits ðr2Þ, is highly variable (30). For
the same set of cranial traits, marsupials have r2 values on the
order of 0.3–0.5, whereas some primates (humans, gorillas, and
chimpanzees) display values under 0.1 (30). These extreme dif-
ferences have potentially important consequences for the evolu-
tion of these clades (31). Our results give indications as to how
these differences could have arisen. Directional selection for size
increase or decrease could cause the total average correlations
to rise with no significant effect on the initial pattern of co-
variation. The same effect is observed in our simulations in the
increase of within-module correlations between traits under
correlated directional selection. Meanwhile, groups with low
average correlations could have suffered events of directional
selection not aligned with their previous modular structure.
These predictions can be tested by reconstruction of net selection
gradients and comparison of these gradients with current co-
variation structures. We predict that if the net selection gradient
is aligned with the first eigenvector of the covariation matrix (i.e.,
selection on size), then integration should be higher.
There are several possible extensions to our model. As it

stands, all loci recombine freely and the only parameter related
to recombination is the number of loci. This simplification could
be removed to explore the effects of linkage disequilibrium on
the covariation between traits. It would then be possible for se-
lection to create groups of loci and pleiotropic relationships with
morphological traits that are inherited together. Other possible
extensions are complexities in the genotype/phenotype relations,
including nonlinearity or multiple levels of interaction between
loci, explicitly including epistatic and dominance effects in the
model, and could be helpful for understanding the evolution of
genomic interactions.

Materials and Methods
Simulation Model. Our individual-based simulation approach is based on the
model described by Wagner (32). A similar but simpler model by Reeve (33)
can also be found. In Wagner’s description (32), p phenotypic traits are
controlled by m pleiotropic diploid loci. The m loci of an individual are
represented by 2m real numbers (yi with i= 1 . . . 2m) representing some
relevant physiological effect of locus i.

The translation from the physiological effects of yi to additive effects
(xj with j= 1 . . .p) is accomplished via an ontogenetic function:
x= fðyÞ, f : R2m →Rp. This function can be arbitrarily complicated and non-
linear. Assuming the function f is differentiable, we can take a linear ap-
proximation given by the differentiation of f, which is the matrix B. The
ontogenetic function then becomes: x= fðyÞ=D½fð0Þ�y=By. This approxi-
mation is equivalent to assuming that alleles only have additive effects (32).
To make the simulation computationally tractable, we opted to simplify the
ontogenetic B matrix even further. In our simulations, the B matrix is binary,
coding only the influence (or lack of influence) of a particular locus on
a particular trait. More clearly, if Bij is 1, locus yi influences additive effect xj ,
and if it is 0, then it does not. Because the B matrix determines whether
a genetic effect will influence one or more traits, it has also been called
a pleiotropic matrix (34), but we point out that changes in pleiotropic
relations can be mediated by epistatic interactions (12). So, although our
model does not include epistasis explicitly, pleiotropic variation represented
by the B matrix does so implicitly. It has been shown that negative pleio-
tropic effects (i.e., a single locus increasing a trait while decreasing another,
and thus creating opposing relations between traits) can affect modularity
patterns. In this scenario, the exact cancellation of positive (increasing or

decreasing traits simultaneously) and negative effects can lead to the ab-
sence of correlation between two traits (34). However, almost all pleiotropic
QTLs detected for quantitative traits show only positive pleiotropic effects
(35–37). Although some studies have reported negative pleiotropic loci (38),
the resolution of these studies suggests that this finding might be due to
closely linked loci (38). For this reason, we opted to include only two pos-
sible states for each position of the B matrix in our model, and if a locus
affects more than one trait, it affects them in the same direction by the
same amount.

To obtain the phenotypic value (z), additive effects are added to an en-
vironmental deviation (e), taken from a multivariate uncorrelated normal
distribution with uniform variance Ve set to 0.8 in all dimensions. An indi-
vidual’s phenotype z is then given by: z= x+ e=By+ e.

The ratio of the number of relevant loci (m) and the number of traits (p)
determines the amount of recombination present in the model, because all
loci recombine freely, without any chromosomal structure. The larger the
value of m, the more independent recombination units we have in the
simulated population.

Mutation rate is modeled by two different processes. With probability μ
per locus per generation, the physiological effects yi are altered by a random
amount drawn from a normal distribution with a mean of 0 and variance σ
set to 0.02. This mutation scheme implies a continuous allele model (39). In
addition to this change in magnitude of the effect of the allele at each locus,
we can flip the value of entries of the B matrix of each individual, with
probability μB per generation per entry. Each position of the B matrix
is independent.

Selection is modeled by a Gaussian individual selection surface WðzÞ,
with predetermined multivariate optimum and covariance structure: WðzÞ=
exp

�
−1
2 ððz− θÞTω−1ðz− θÞÞ�, where θ represents the multivariate fitness op-

timum and ω the covariance matrix of the selection surface. We simulate
directional selection by altering the position of the optimum in phenotypic
space. The rate of change in parameter θ represents different strengths of
directional selection. If the covariance matrix ω is diagonal, then there is
no correlated stabilizing selection, that is, selection directly on the co-
variance structure of the population. If ω is not diagonal, then there is
correlated stabilizing selection and the association between traits is di-
rectly selected upon. Positive off-diagonal elements in the ω matrix promote
positive correlations between traits in the population. The ω used in all sim-
ulations involving correlated stabilizing selection has a within-modules corre-
lation rω set to 0.8 and null correlations between modules. The selective
covariance Vω is set to 10 for all traits. In cases with uncorrelated stabilizing
selection, the off-diagonal elements were set to 0. This value of Vω is consis-
tent with strong stabilizing selection (16) (SI Appendix, Fig. S8).

A list of sires and dams is produced by sampling all individuals with re-
placement and probability proportional to their fitnessWðzÞ. Sires and dams
are then paired randomly and produce one offspring per couple. The off-
spring is created with gametes formed by sampling one allele of each of the
m loci and the corresponding column of the individual’s B matrix. This in-
heritance scheme means individual columns of the B matrix are inherited
along with the corresponding sampled allele, so each allele carries its
pleiotropic effects to the next generation. In a sense, this inheritance can be
interpreted as cis-regulatory relations for pleiotropy. Population size Ne is
kept constant at 5,000 individuals, and this selection scheme results in ef-
fective population size equal to census population size (40).

Initial parameter values were based on the parameter values used by
Jones et al. (15–17). Values used maintained reasonable values for herita-
bilities (between 0.3 and 0.5) for morphological systems (41, 42). Addi-
tional simulations showing the stability of the results under different
population sizes and mutation rates are presented in SI Appendix, Figs. S6
and S7.

Directional selection strength on univariate morphological systems was
surveyed by Kingsolver et al. (43). Our strongest values of directional se-
lection are on the weak side of a typical selection gradient for this survey,
but we maintain the directional selection for many generations, leading to
large morphological change in the populations. We vary the peak move-
ment rate from 0.0001 to 0.004 for a period of 10,000 generations. Because
the phenotypic variance fluctuated around 0.8–1.2, these peak movements
can be interpreted in units of phenotypic SDs.

Quantifying Modularity. We detect variational modularity by investigating the
phenotypic correlations between traits. A population is said to present varia-
tional modularity when the correlation between some sets of traits belonging
to a module is higher than the correlation between traits of different modules.
Average correlation between and withinmodules can be used to identify these
differences. The ratio between the within- and between-module average
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correlation is called the AVG Ratio, and it can be used to quantify the mod-
ularity in a population.

Changes in the population variational structure can be assessed by looking
directly at the evolution of eigenvalues and associated eigenvectors of the
phenotypic covariance matrix. These principal components measure how
independent variation is distributed in phenotypic space. In most of our
populations, the first eigenvector is in the direction associated with size, that
is, the direction of simultaneous increase of all traits, whereas the second
eigenvector is a contrast between modules or, more clearly, the direction of
increase of traits within a module with simultaneous decrease in the other
module (details are provided in SI Appendix).

We may also quantify the relative amount of variation in the direction
of selection, excluding potentially constraining traits, and compare this

directional measure with the mean amount of variation in all directions of
morphological space. For this comparison, we use autonomy in the di-
rection of the modules and compare it with the average autonomy for
random directions (20). Directional autonomy of G in the direction of β is
defined as aðG,βÞ= ðβG−1βÞ−1ðβGβÞ−1.
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