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Decades of genome-wide mapping have shown that most genetic polymorphisms associated with complex 
traits are found in non-coding regions of the genome. Characterizing the effect of such genetic variation 
presents a formidable challenge, and eQTL mapping has been a key approach to understand the non-coding 
genome. However, comprehensive eQTL maps are available only for a few species like yeast and humans. With 
the aim of understanding the genetic landscape that regulates transcriptional variation in Drosophila 
melanogaster, we developed an outbred mapping panel in this species, the Drosophila Outbred Synthetic Panel 
(Dros-OSP). Using this community resource, we collected transcriptomic and genomic data for 1800 individual 
flies and were able to map cis and trans eQTLs for 98% of the genes expressed in D. melanogaster, increasing 
by thousands the number of genes for which regulatory loci are known in this species. We described, for the 
first time in the context of an outbred population, the properties of local and distal regulation of gene 
expression in terms of genetic diversity, heritability, connectivity, and pleiotropy. We uncovered that, contrary 
to long-standing assumptions, a significant part of gene co-expression networks is organized in a non-modular 
fashion. These results bring the fruit fly to the level of understanding that was only available for a few other 
organisms, and offer a new mapping resource that will expand the possibilities currently available to the 
Drosophila community. This data is available at Drosophilaeqtl.org. 
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INTRODUCTION 
 
Two decades of genome wide association studies and QTL 
mapping experiments in a wide array of species have 
revealed that most polymorphisms associated with variation 
in complex traits map predominantly to non-coding regions, 
and are likely to be involved in gene regulation (Albert & 
Kruglyak, 2015; Alsheikh et al., 2022). This poses major 
challenges for the characterization of the functional 
consequences of sequence variation, and ultimately for the 
understanding of how genetic polymorphisms drive 
phenotypic variation. To address this problem, considerable 
effort has been dedicated to mapping genetic variants that 
regulate variation in gene expression levels genome-wide 
(i.e. expression Quantitative Traits Loci or eQTLs). While 
eQTL studies in humans have led the way (Stranger et al., 
2007; The GTEx Consortium, 2020; Võsa et al., 2021), large-
scale projects in model systems such as yeast (Albert et al., 
2018; Kita et al., 2017), mice (Gonzales et al., 2018) and 
Arabidopsis (Lan et al., 2021) have, for each of these species, 
provided detailed annotations of their regulatory genome. 
These eQTL catalogs have proven invaluable resources that 
have enabled the identification of general characteristics of 

the genetic basis of gene expression variation across species. 
Finally, such catalogs have helped prioritize candidate genes 
by suggesting mechanisms through which polymorphisms  
impact gene function in the context of specific traits, 
diseases, or adaptations. Gene expression variation is 
regulated by a large number of genetic variants that can only 
be detected in experiments with high statistical power 
(Albert et al., 2018; Võsa et al., 2021). As a result, for most 
organisms, the gene regulatory landscape that explains 
individual transcriptional variation remains poorly 
understood. This is also true for Drosophila melanogaster, 
which, despite having one of the best annotated genomes and 
being an iconic model system, has lagged behind in the 
identification of eQTLs regulating transcriptional variation 
at the population-level, limiting the reach of this powerful 
model system. Studies aimed at understanding the genetic 
basis of transcriptional variation in D. melanogaster have, 
thus far, been limited to a relatively small number of inbred 
lines (Everett et al., 2020) or pools of F1 individuals derived 
from crosses of inbred lines (King et al., 2014), limiting the 
statistical power. In addition, the use of inbred genomes 
complicates the study of gene interactions, such as 
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dominance or epistasis, which are an important part of the 
genetic architecture of most complex traits (Mackay, 2014). 
 
To address these limitations, we created a new synthetic 
outbred mapping resource that can be used to dissect the 
genetic basis of any complex trait. We created five mapping 
populations, one for each geographic location represented in 
the wild-derived Global Diversity panel (Grenier et al., 2015) 
with flies collected in Ithaca (USA), the Netherlands, Beijing 

(China), Zimbabwe and Tanzania. For each location, 15 to 
18 inbred lines were crossed using a round-robin design, and 
the resulting population was maintained in large cages and 
allowed to recombine freely for over ~125 generations. The 
resulting Drosophila Outbred Synthetic Populations (Dros-
OSP) differ from other mapping panels like DSPR (King et 
al., 2012) and DGRP (Mackay et al., 2012) in that individuals 
are not maintained as inbred lines. The key benefits of this 
design are: (1) It assures that the allele frequency spectrum 
is biased towards common alleles, in contrast with wild 
populations, which improves statistical power to detect 
associations with alleles that otherwise would be too rare in 
the wild. (2) More than ~125 generations of random mating 
and recombination erode long LD blocks, which improves 
mapping resolution. (3) The outbred nature of the Dros-OSP 
allows for the exploration of complex traits in a natural 
genomic context, where complex interactions like 
dominance and epistasis do occur. (4) Finally, this mapping 
panel does not impose any limitations on sample size, 
experiments can be as large as necessary, which is 
particularly important for the identification of genotype-
phenotype association with small effects sizes, as may be 
expected for most complex traits. 
 
Using the Drosophila Outbred Synthetic Population from the 
Netherlands, we simultaneously collected DNA and 
RNAseq data for 1879 outbred flies across two tissues. We 
identified eQTLs for 98% of genes, increasing by thousands 
the number of genes for which regulatory loci are known in 
Drosophila. Such a comprehensive genome-wide description 
of the regulatory landscape allowed us to describe the 
properties of local (cis) and distant (trans) eQTLs in terms of 
genetic diversity, heritability, connectivity, and pleiotropy. 
Additionally, we use state-of-the-art clustering algorithms to 
uncover communities in the gene co-expression network 
that do not follow the traditional expectation of modularity 
maximization. This resulted in new insights into the 
organization of Drosophila transcriptional networks. The 
results of this study are available at Drosophilaeqtl.org, a 
website that provides a user-friendly interface to explore the 
properties of the Drosophila transcriptome organization and 
eQTL map.  
 
 

RESULTS 
 
A new mapping resource: The Drosophila Outbred 
Synthetic Populations (Dros-OSP)  
Our ability to dissect the genetic basis of complex traits 
depends on the available mapping populations. 
Traditionally, inbred and recombinant inbred lines panels 
(RILs) have been a commonly used resource for complex 
trait mapping. However, research in mice and rats has 
shown that using outbred populations greatly improves 
mapping resolution and power to detect genotype-
phenotype associations, while maintaining a genetic context 
closer to wild populations (Gileta et al., 2022; Pallares et al., 

Figure 1. Correlation between head and body gene expression lev-
els in D. melanogaster transcriptomes. (A) Correlation between ex-
pression levels in head (940 samples) and body (939 samples). Each 
dot represents a gene; dotted lines indicate the threshold used to deter-
mine whether a gene is expressed or not (average CPM>1 and detected 
in at least 20% of the samples). Orange, 7795 genes expressed in both 
tissues. The Pearson correlation r, was calculated only including shared 
genes, p-value <2.2e-16. Dark green, 1082 genes with head-specific ex-
pression. Light green, 596 genes with body-specific expression. The in-
set plot shows the mean expression for tissue-specific (green) and 
shared genes (orange). (B) GO Biological Process enrichment for tis-
sue-specific genes (dark green, head-specific; light green, body-spe-
cific). The top ten significantly enriched terms at FDR 0.05 are shown 
grouped by the number of shared genes between terms. Dot size indi-
cates the p-value of the enrichment, which is also indicated for each 
term. Analysis done in ShinyGO v0.77 (Ge et al., 2020). 
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2015; Yalcin et al., 2010). Here, we present a new outbred 
mapping resource in D. melanogaster (Dros-OSP) for 
mapping complex trait variation.  
 
The Dros-OSP represents a significant shift from existing 
mapping resources in Drosophila. Traditionally, the 
sequence of a given set of inbred lines (or RILs) is provided 
as a resource. This means that the user only needs to 
phenotype their trait of interest in the desired lines, and can 
benefit from the available genetic information to perform 
genetic mapping. This paradigm was a game-changer for the 
field when DNA sequencing was cost prohibitive. However, 
the limited number of available inbred lines imposes a cap 
on the statistical power to detect genotype-phenotype 
associations. And the fact that such associations tend to have 
small effect sizes for most complex traits, further limits the 
inferences made with small sample sizes. The availability of 
outbred mapping populations not only remedies the sample 
size limitations, improving statistical power, but also allows 
us to dissect complex traits in a population that is more 
similar to a natural population in that each individual has a 
unique heterogeneous genome. The trade-off is that the user 
will need to sequence every Dros-OSP individual used for 
mapping. However, novel methods and reduction of 
sequencing costs have made possible the high-throughput 
and low-cost collection of genomic and transcriptomic data 
in thousands of individuals (e.g., (Pallares et al., 2020)).  
The Drosophila Outbred Synthetic Panel has ideal properties 
for genetic mapping. It has an allele frequency spectrum 
biased toward common alleles (Fig. S1A), harbors ample 
genetic diversity (1,128,092 segregating SNPs MAF>1%, Fig. 
S1B, D-I), has rapid LD decay (~200bp, Fig. S1C), and shows 
virtually no genetic structure (the first SNP-based PC 
explains less than 3% of genetic variation, Fig. S2). And 
finally, the Dros-OSP populations represent genetic and 
phenotypic diversity of five locations around the world: 
Tasmania, Beijing, the Netherlands, Zimbabwe, and Ithaca 
(USA). 
 

Here, we illustrate one application of this mapping resource 
to characterize the genetic architecture of transcriptional 
variation. Using the Dros-OSP population from the 
Netherlands, we have quantified genetic and transcriptional 
variation genome-wide in 1879 samples of outbred D. 
melanogaster. We explored gene expression variation in two 
body parts, the head and the body, referred to as tissues 
thereafter.  

We found that 9473 genes are expressed in adult female D. 
melanogaster across both tissues. Most genes are expressed 
in the two tissues explored here, head and body (n = 7795), 
but each tissue has ~10% of genes that are reliably detected 
only in one tissue (tissue-specific), 1082 genes (12.6%) and 
596 genes (10.4%) in head and body transcriptomes, 
respectively (Table S1). Overall, the expression level of genes 
expressed in both tissues (shared) is strongly correlated, 
although there is notable variation at the gene-specific level 
(Fig. 1A). This is reflected in the fact that 94% of these genes 
are differentially expressed between tissues (Fig. S3A, Table 
S1). The top differentially expressed genes are enriched in 
synapsis and sensory-related processes mediating 
locomotion and mating behavior (Fig. S3B). And, as may be 
expected, tissue-specific genes are enriched for visual 
perception and neuropeptide signaling in the head, and egg 
production in the body (Fig. 1B). Notably, tissue-specific 
genes are expressed at lower levels than shared genes (Fig. 
1A). 
 
Heritability of gene expression 
 
We estimated SNP heritability per gene using the linear 
mixed model (LMM) implemented in GEMMA (X. Zhou & 
Stephens, 2012). This estimate corresponds to the amount of 
gene expression variance in the fly population explained by 
genetics effects. Non-zero heritability estimates were 
obtained for 72% (body) and 80% (head) of genes (Fig. S4-S6, 
Table S2). The heritability distribution is skewed towards 
low values, with an average of 0.07-0.08 (Fig. 2A). Genes  

Figure 2. Heritability of gene expression. (A) The percentage of population-level expression variance explained by ~380,000 SNPs (MAF>0.05), 
or SNP heritability (SNP_h2), is shown for 6001 genes expressed in the body, and 7155 genes expressed in the head. (B) There is a positive 
correlation between expression levels and SNP heritability. Genes in the first and fifth quantile have a median gene expression of 12.9 CPM and 
63.6 CPM respectively, in the head (23.3 CPM and 57.5 CPM in the body). (C) There is a positive correlation between heritability and per-gene 
nucleotide diversity (π). Average per-gene π in first and fifth SNP heritability quantiles is 0.0027 and 0.0038, respectively in the head (0.0028 and 
0.0037 in the body). The Spearman rank correlation is shown in B and C for each tissue, p-value for all tests < 2.2 e-16. Rank correlations were 
calculated using SNP_h2 as a continuous variable and not divided in quantiles. 
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with higher heritability are expressed at higher levels (Fig. 
2B) and have higher nucleotide diversity, π (Fig. 2C) than 
low heritability genes. High and low heritability genes are 
not randomly distributed in the genome, chrX and chr4 are 
significantly enriched in low heritability genes, while the 
other main chromosomal arms (chr2L, chr2R, and chr3R) 
are enriched for high heritability genes. This pattern 
matches the differences in genetic diversity between 
chromosomes (Fig. S1D-I). These groups of genes also differ 
in their biological function (GO Biological Processes). Low 
heritability genes are enriched for very general regulatory 
processes including protein and RNA metabolism in both 
tissues, and early development and morphogenesis in the 
body transcriptome (Fig. S7). On the other hand, high 
heritability genes are enriched in more specific processes 
like carbohydrate and fatty acid metabolism, and immune 
response and detoxification (Fig. S8). 
 
 
 

 
 
Structure of the Drosophila transcriptome 
 
Next, we investigate patterns of co-expression to better 
understand community structure among transcripts. At the 
individual gene level, the fly transcriptome appears weakly 
connected. After removing poorly supported edges 
(Spearman correlation p-values > FDR 1%) the average 
correlation per gene is 0.13 in both tissues (min = 0.11, max 
= 0.24, Fig. 3A, Table S1), and the median number of genes 
connected to the focal gene (i.e., degree) is 329 and 469 in 
head and body transcriptomes, respectively (min = 3, max 
4899, Fig. 3B, Table S1). However, although the average 
correlation per gene is rather weak, the correlation between 
specific gene pairs can be very high (max rho = 0.95, Fig. 
3A). 
 
Highly connected genes (correlated with ~20% of genes) are 
enriched in ATP metabolism, and translation in both tissues, 
and also in behavior and synapsis in the head (Fig. S10). 
While genes with low degree (correlated with <1% of genes) 
are involved in RNA processing including ncRNA and 
tRNA, with specific modules in the head involved in DNA 
repair, and in carbohydrate and lipid related processes in the 
body (Fig. S11). Expression level, first, and SNP heritability, 
second, are the gene properties best correlated with 
connectivity metrics. Highly expressed, highly heritable 
genes are connected to a large number of genes, and such 
connections are supported by high correlation values (Fig. 
3C-D, Fig. S9). 
To go beyond the gene-level description presented above and 
explore the community structure of the D. melanogaster 
transcriptome, we clustered genes using the Weighted 
Nested Degree Corrected Stochastic Block Model (SBM) 
(Karrer & Newman, 2011; Peixoto, 2017). While traditional 
clustering approaches try to maximize intra-modular 
correlation while minimizing correlation between modules, 
SBM uses a Bayesian approach to define gene clusters that 
does not rely on modularity (see Methods for more details on 
SBM, Fig. S12). Consequently, here we refer to clusters of co-
expressed genes as “gene blocks” instead of “gene modules” 
to highlight the difference between these two approaches, 
and the different biological information that they capture. 
We further explore this approach in a separate manuscript 
(Melo, in prep) and briefly summarize the results below. 
 
Body and head transcriptomes were partitioned into a total 
of 78 and 82 blocks, respectively, with a median of 32 and 36 
genes per module (Fig. 4A, Table S3, Table S1). Such fine 
clustering of genes allows for a clear biological 
interpretation of most modules which are, on average, 
enriched in only six GO Biological Process terms (Table S3-
5). Although the number of total modules, and the gene-
level patterns described in the section above are very similar 
between head and body, there is a fundamental difference in 
the way the transcriptome is structured: the head 

Figure 3. Patterns of gene connectivity based on expression corre-
lation. Two gene-level connectivity measures are shown: (A) Average 
pairwise Spearman correlation between the focal gene and all other 
genes. Only correlations supported by a p-value below FDR 1% were 
used to estimate the average. Median correlation per gene is 0.13 in 
both tissues (min rho = 0.11, max rho = 0.24). The inset shows the dis-
tribution of pairwise correlation for all gene pairs with significant correla-
tion p-values, highlighting the fact that although the distribution is 
skewed towards low correlations, some gene pairs are highly correlated 
(max rho = 0.95). (B) Degree represents the number of genes connected 
to a focal gene. For each gene, we counted the number of genes with 
significant Spearman correlation (FDR 1%) (min = 3, max = 4899). (C) 
Correlation between gene expression heritability and degree. Median 
SNP_h2 first vs fifth degree quantile: 0.034 vs 0.082 in the head; 0.026 
vs 0.065 in the body (D) Correlation between gene expression levels 
(CPM) and gene degree. Median CPM first vs fifth degree quantile: 4.9 
vs 111.9 in the head; 13.5 vs 79.5 in the body. Rank correlations in C 
and D were calculated using degree as a continuous variable, p-values 
for the correlations were both < 2.2 e-16. 
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transcriptome is highly modular, with 94% of the blocks 
resembling  traditional co-expressed modules  (i.e., higher 
within than between-block correlation, shown as positive 
assortativity values in Table S3), while only about ~69% of 
the blocks that constitute the body transcriptome are 
modular (Fisher exact test, p-value 5.88e-5, OR 6.76) (Fig. 
4B). This highlights the importance of not relying only on 
modularity maximization methods when studying 
transcriptome structure. Our clustering approach was able 
to recover biologically relevant information from thousands 
of genes that would have been missed with modularity-
maximization approaches. A highlight of the results is that 
the same proportion of non-modular blocks has significant 
GO terms enrichment compared to modular blocks (60-70% 

of blocks have GO enrichment, Fisher exact test: p-value 
body = 0.59, p-value head = 1) (Fig. 4B). 
 
Genetic regulation of transcriptional variation 
 
Consistent with the fact that most genes have non-zero 
heritability estimates, we identified eQTLs (genetic variants 
regulating expression levels) for 98% of the genes in the D. 
melanogaster transcriptome, making this one the most 
comprehensive eQTL map in this species (Fig. 5, Table S2). 
For genes with eQTLs, 60% have at least one cis-eQTL (SNP 
position within ±10Kb of gene body), and 99% at least one 
trans-eQTL (Fig. S13, Table S1). And, 58% of genes have 
significant eQTLs in cis and trans, highlighting the 

Figure 4. Modular organization of the fly transcriptome. The Drosophila transcriptome is highly structured, with 78 gene blocks in the body and 
82 in the head. (A) The distribution of the number of genes per gene block is heavily biased towards small blocks (median = 34 genes), increasing 
the resolution of the GO enrichment for each block. (B) Not all gene clusters follow modularity assumptions. For each gene block, a level of assort-
ativity was defined; values > 0 indicate modular behavior (i.e., genes within a block are more correlated with themselves than with genes in other 
modules). 94% of head blocks are modular, while only 67% are modular in the body. The inset plot shows that the level of assortativity is not 
correlated with GO enrichment, indicating that modular and non-modular blocks are associated with functional information (60-70% of blocks have 
GO enrichment, Fisher exact test: p-value body = 0.59, p-value head = 1).  (C-D) Hierarchical representation of the transcriptome structure for head 
(C) and body (D). Light blue lines indicate the order in which the transcriptome was consecutively split into blocks (squares. The block in the middle 
of the circus plot represents the whole transcriptome. The blocks along the edge correspond to the final level of partition (level 1), that is, the smallest 
gene clusters whose characteristics are plotted in (A-B). GO enrichment terms for some level 2 blocks (numbered blue circles) are annotated. The 
numbered circles in the zoom-in panels indicate block ID in the last level of partition (level 1) and GO enrichment terms for those small blocks are 
annotated. 60% of gene blocks in the head and 70% are enriched for GO Biological Process terms regardless of the modular nature of the block. 
The zoom-in panels show the fine scale GO partitioning of an assortative block in the head (C), and a non-assortative block in the body (D). 
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complexity of gene expression regulation. A single gene has 
a median number of four cis-eQTLs and five trans-eQTLs. 
To further characterize the cis-regulatory landscape, we 
annotated all 258,283 cis-SNPs (SNPs located ±10Kb from 
any gene in the genome) based on the predicted effect that 
each allele will have on gene expression levels. To that end, 
we used DeepArk, a machine learning-based approach that 
uses 1552 experimentally derived D. melanogaster datasets to 
predict the cis regulatory activity of individual SNPs based 
on sequence information (Cofer et al., 2021). Compared to 
non-significant SNPs, the cis-eQTLs identified in this study 
are enriched for non-zero predicted regulatory effects, and 
particularly strongly enriched for large predicted effects 
(Figure 6A). This relationship between statistical discovery 
and predicted effect size based on experimental data has 
been previously shown for cis-eQTLs detected in genome-
wide-association studies in humans (J. Zhou et al., 2018).  
Our results show that such relationship is also true for the 
statistical inference of eQTLs in Drosophila. Finally, cis-
eQTLs that have regulatory effects in both, head and body, 
tend to have larger predicted effect sizes compared to tissue-
specific cis-eQTLs (Fig. S14A). To facilitate follow-up 
analysis, for each gene we annotate the best cis-eQTL as the 
one with the largest effect size predicted by DeepArk (Table 
S6A,B). With this, we offer an avenue for prioritizing 
candidate cis-eQTL for 58% (n=5499) of the genes expressed 
in female D. melanogaster.  
 
The genetic regulation of gene expression tends to be 
ubiquitous when in trans and tissue-specific when in cis. To 
allow this comparison, we focus on genes expressed in both 
tissues (n = 7719) and find that while 77% of the genes with 
trans regulation have trans-eQTLs in both tissues, only 41% 
of genes with cis-regulation have cis-eQTL in head and body. 

As seen before in humans and other organisms, most eQTLs 
are located in non-coding regions of the genome (95% of cis-
eQTL, 97% of trans-eQTL in Drosophila, Fig. S15B, Table S6). 
But, in contrast with humans, due to the smaller genome 
size in Drosophila, the majority of eQTLs fall in genic, 
although non-coding, regions (73% of cis-eQTL, 67% of trans-
eQTL, Fig. S15B). Although this highlights the already well-
established importance of non-coding genetic variation, we 
also find an important role for coding variation in regulating 
gene expression: eQTLs are enriched for SNPs that generate 
non-synonymous protein substitutions, compared to SNPs 
that are not eQTLs (chi-square test, cis-eQTL p<2.2 e-16, 
odds ratio = 2.18; trans-eQTL p<2.2e-16, odds ratio = 1.88). 
This result suggests two things: first, trans-regulation of gene 
expression can be mediated by protein changes in the focal 
gene where the eQTL lays (e.g., protein changes in a 
transcription factor will affect its binding to the promoter of 
distant genes). Second, and more interesting, genetic 
variation that results in protein changes in the focal gene 
also tends to modify its own expression levels (cis-eQTL). 
The importance of the latter mechanism is further supported 
by the fact that cis-eQTLs located within the gene region (as 
opposed to upstream or downstream) tend to fall in exons 
more than trans-eQTL, which instead are mostly found in 
introns (Fig. S15A). 
 
We find that each eQTL is associated with the regulation of 
one or very few genes (median = 1). However, some eQTLs 
have tens to hundreds of trans-effects (max eQTL pleiotropy 
in head tissue = 56, in body tissue = 776, Table S6). This 
pattern suggests the presence of trans hot-spots. We identify 
22 and 189 hot-eQTLs in head and body, respectively, 
defined as SNPs regulating more than 20 genes in trans. The 
pattern of hotspots differs between body parts, with the body 
transcriptome showing more hotspots, but also more of 

Figure 5. Saturation level of the eQTL map in D. melanogaster. To evaluate the effect of sample size (i.e., statistical power) in the detection of 
(A) cis-eQTL and (B) trans-eQTL, the full dataset of ~1000 flies per tissue was randomly down-sampled to smaller datasets in increments of ~200 
individuals per tissue (x-axis). To get the overview of the total number of genes with eQTL, the results of both tissues were combined (orange line). 
We identify cis-eQTL for 58% of the genes expressed in female D. melanogaster (n = 5417), and trans-eQTL for 97% of the genes (n = 9001). The 
red arrow on the y-axis represents the number of genes with eQTL from previous eQTL mappings in D. melanogaster (1284 genes with cis-regula-
tion, and 1653 with trans-regulation, (Everett et al., 2020). 
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them seem to be clustered around telomeric regions which 
suggest that they might be driven by strong linkage in those 
regions (Fig. S17). These highly pleiotropic hot-eQTLs 
represent the full spectrum of allele frequencies in the fly 
population (Fig. S16B), and although preferentially located 
in pericentromeric regions, hot-eQTLs are found across the 
genome (Fig. S16C,D). These highly pleiotropic SNPs are 
necessarily regulating genes in trans, but to infer whether 
such effects might be direct (the eQTL regulates distant 
genes through e.g., long-range chromatin interactions) or 
indirect (the eQTL regulates expression of a gene in cis, and 
the gene product regulates the expression of distant genes), 
we asked whether hot-eQTLs are more likely to regulate at 
least one gene in cis (SNP is both, cis-eQTL and trans-eQTL) 
or to only regulate distant genes (SNP is a trans-eQTL but 
not a cis-eQTL). We find that for most hot-eQTLs an indirect 
mechanism is more likely because they are more likely than 
not to be a cis-eQTL (odds ratio 1.9, p-value Fisher test = 
<2.2e-16, Fig. S16A, Table S7). 
 
The experimental validation of regulatory effects on gene 
expression currently presents a challenge, given that large 
population sizes are needed to detect the small effects 
associated with eQTLs. Here, we have used a simple 
experimental design that relies on pools of individuals that 
share the same genotype at the focal cis-eQTL while 
retaining heterogeneity in their genomic background (Wolf 
et al., 2023). This approach reduces expression variation 
within a genotype while increasing the statistical power to 
detect differences in mean expression between alternative 
genotypes. Using this approach, we show one of the very few 
validations of the regulatory effect of naturally segregating 
genetic variation using outbred individuals (Fig. 6B, C, Fig. 
S14B-D). 
 
 

DISCUSSION 
 
To understand how the transcriptome is structured and 
regulated at the population level, we used the Drosophila 
Outbred Synthetic Population derived from the Netherlands. 
Using a total of 1879 genomic and RNAseq samples derived 
from two body parts, we identified genomic loci (eQTL) 
regulating variation in gene expression for 98% of the genes 
expressed in female D. melanogaster. This comprehensive 
genome-wide eQTL map enabled us to dissect general 
properties of cis and trans regulation in this species, bringing 
D. melanogaster to a level of understanding previously 
available only for a few species such as yeast (Albert et al., 
2018) and humans (The GTEx Consortium, 2020). 
Focusing on an outbred population, where each individual 
fly has a unique genomic composition, allowed us to collect 
a large-enough sample size to reach saturation of the eQTL 
map at the gene level, that is, 98% of the genes have at least 
one eQTL. Our eQTL catalog offers a comprehensive 
resource for the complex trait community, where the 
number of genes with known cis-regulation increased from 
1284 (Everett et al., 2020) to 5417, and from 1653 (Everett et 
al., 2020) to 9001 for trans-regulation. In addition to the 
obvious increase in power derived from a large sample size, 
the use of two tissues allowed us to detect even more eQTLs. 
This is reflected in the fact that 59% of genes with cis-
regulation and 23% of genes with trans-regulation have 
tissue-specific cis- and trans-eQTL, respectively. This result 
suggests that to further improve the eQTL map, in particular 
the cis-eQTL map, more tissues rather than sample size, are 
necessary.  
 
We find that the expression level of most genes is regulated 
by both local and distal genetic variants, and that multiple 
SNPs are usually involved. Such pattern has been previously 

Figure 6. cis-eQTLs are enriched for large predicted regulatory effects and experimentally replicated. (A) The cis-eQTLs identified in this 
study using a statistical approached are enriched in large predicted regulatory effects, when compared to non-significant SNPs. Effect size prediction 
was done using the deep-learning algorithm implemented in DeepArk. Sample size for the comparison: 68,859 candidate cis-eQTL; 258,283 non-
significant sites located in cis (within 10Kb from start or end of gene body). For each effect size, groups were compared using Fisher exact tests. All 
tests have p-values < 0.001. 95% confidence intervals for odds ratio are shown. (B,C) The genotype at candidate cis-eQTLs regulates expression 
levels of the focal gene. Each dot corresponds to a pool of 10 outbred flies fixed for one eQTL allele but with heterogeneous genomic backgrounds. 
Expression levels of the genes (B) midway and (C) CG7497 were quantified using rt-qPCR (midway t.test p-value: 0.0015, fold change 1.68x; 
CG7497 t.test p-value 8.088e-5, fold change 4.08x). 
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observed in humans, mice, yeast and fruit flies (Albert et al., 
2018; Gonzales et al., 2018; Huang et al., 2015; Jansen et al., 
2017; The GTEx Consortium, 2020). Despite such 
idiosyncratic gene-specific regulation, we find 
transcriptional regulation hotspots, where one single eQTL 
is associated with expression variation of tens or hundreds 
of genes. Although some hotspots can be attributed to batch 
effects or population structure (Kang et al., 2008), they seem 
to be a property of the eQTL map of several species, 
including mice (Gonzales et al., 2018; Hasin-Brumshtein et 
al., 2016), Drosophila (King et al., 2014), and yeast - where 
hotspots have been experimentally validated (e. g. (Albert et 
al., 2018; Smith & Kruglyak, 2008; Zhu et al., 2008)).  
Recent machine learning approaches use sequence-based 
information to predict the impact of individual alleles on 
expression levels (Cofer et al., 2021; J. Zhou et al., 2018). 
However, they cannot predict which gene will be regulated 
by certain SNP. In species with small genomes and high gene 
density like D. melanogaster, single SNPs might act as cis-
eQTL for many genes. On the other hand, statistical 
approaches like the one used here to map eQTLs, offer a 
direct link between a genetic variant and its target gene. To 
make use of these two powerful lines of evidence, we have 
annotated thousands of cis-SNPs (located ± 10Kb from any 
gene) with the statistical probability that they regulate a 
specific gene, and the machine learning-derived predicted 
effect size of such regulatory effect. This resource will help 
to prioritize SNPs for further experiments, as we have done 
here to validate multiple candidate cis-eQTL (Table S8). For 
such validation we implemented an approach that relies on 
using outbred flies fixed for a candidate eQTL allele while 
preserving their genomic heterogeneity (Wolf et al., 2023). 
To our knowledge, this is the first time that eQTL effects 
have been experimentally validated in outbred individuals.  
Traditionally, our understanding of the organization of 
transcriptional networks has been driven by the concept of 
modularity, where a module is defined as a group of genes 
that are more strongly connected to each other than to genes 
outside that module. Here, we implemented a method that 
does not rely on modularity maximization to define gene 
clusters, the Stochastic Block Model – SBM (Karrer & 
Newman, 2011; Peixoto, 2017). Doing so, we discovered that 
a considerable proportion of gene blocks in Drosophila do 
not show the expected pattern of high connectivity within 
modules and low connectivity across modules. This suggests 
that a full understanding of transcriptional organization 
needs to go beyond modularity and incorporate other 
properties of gene connectivity. For example, two tightly 
correlated groups of genes can be clustered in separate 
blocks because the genes in the first group are correlated to 
a third block while the genes in the second block are not. It’s 
also possible that a group of genes is clustered in the same 
block not because they are correlated among themselves but 
because they tend to be correlated with the same genes in 
another block. Elsewhere we discuss in detail the advantages 
of using methods that don’t rely on modularity 

maximization (e.g. SBM) to study the architecture of 
transcriptional networks (Melo, in prep).  
 
This study uncovers the fine scale landscape of gene 
expression regulation in D. melanogaster, identifies general 
properties of cis and trans eQTL, and describes the global 
organization of the transcriptome. In doing so, it sets the 
ground for future studies using gene expression as means to 
understand how genetic variation gets translated into 
phenotypic variation. Critically, defining the direction in 
which information flows in transcriptional networks by 
building directed transcriptional networks will allow us to 
draw the causal path from allele frequency to phenotypic 
variation. 
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MATERIALS AND METHODS 
 
A synthetic global population of Drosophila 
melanogaster 
 

Using the Global Diversity Lines (Grenier et al., 2015) as 
founder lines, we created five Drosophila Outbred Popula-
tions that represent genetic diversity from five continents – 
Tasmania, Beijing, The Netherlands, Zimbabwe, and Ithaca 
(USA). For each geographical location, 14 to 20 Global Di-
versity Lines were crossed in a round-robin design. The re-
sulting F1 flies were again crossed in the same way to avoid 
losing any of the parental chromosomes. The F2 individuals 
were combined in one cage per geographical location and 
have been freely recombining for ~200 generations at a pop-
ulation size exceeding ~5000 flies. Each individual fly in 
these populations has a unique genomic composition, mak-
ing them suitable for mapping studies in a context analogous 
to a natural population. In this study, we used the outbred 
population from The Netherlands, which will be called Nex 
in the text. At the time of the experiment, flies had been re-
combining for ~120 generations, with a population size in 
the order of several thousands. The population was slowly 
expanded in a large cage for ~10 generations until reaching 
~10k individuals before the experiment was conducted. All 
flies were maintained at 25 °C, 65% humidity, and a 12h:12h 
light:dark cycle, and were fed media with the following com-
position: 1% agar, 8.3% glucose, 8.3% yeast, 0.41% phosphoric 
acid (7%), and 0.41% propionic acid (83.6%). 
 
Experimental design 
 

The experimental flies were collected from the Nex outbred 
population in three consecutive rounds of egg laying from 
the same parents. Each egg lay consisted of 15 bottles of fresh 
media placed inside the cage for ~24 hours or less, control-
ling as much as possible for equal egg density between bot-
tles. Newly eclosed adult flies were transferred to new bottles 
at the same time every day to assure that all flies were age 
matched; flies were collected for about a week until most pu-
pae had eclosed. After allowing one or two days for all flies 
to mate, males and females were sorted and placed in differ-
ent bottles until they were seven days old. To avoid CO2 ex-
posure, we worked in a 4˚C room to cold-shock seven-day 
old females and plated them in 96-well plates that were im-
mediately submerged in liquid nitrogen to flash freeze the 
flies. Individuals that originated from the same egg lay and 
eclosion batch were always kept in the same plate (allowing 
us to account for potential batch effect in downstream anal-
ysis). Heads and bodies were then separated in the following 
manner: each plate was sealed with a rubber lid (Ther-
moFisher, #AB0566) and placed in liquid nitrogen for a cou-
ple of minutes, then the plate was bashed against a solid sur-
face causing the head to fall off while the thorax and abdo-
men remain together; using a custom-made sieve, heads 
only were transferred to a new pre-cooled 96-well plate 
while bodies remained in the original plate. Head and body 

plates were sealed and immediately placed at -80˚C for stor-
age. All samples used in this study are female flies. 
 
mRNA extraction and RNAseq library preparation 
 

We used a previously optimized low-cost and high-through-
put protocol for mRNA extraction from single fly heads (Pal-
lares et al., 2020); the protocol is described in detail here: 
Suppl. File 2 of (Pallares et al., 2020). RNAseq library prepa-
ration was done following the TM3’seq protocol (Pallares et 
al., 2020); a detailed description of the protocol, primers, and 
reagents is available in Suppl. File 1 of Pallares et al. More 
details can be found in Supplementary Methods. 
 
 
Processing of RNAseq data 
 

Low-quality bases and adapter sequences were trimmed 
from the raw RNAseq reads using Trimmomatic 0.32 (Bolger 
et al., 2014). Reads shorter than 20nt after trimming were 
discarded. [Trimmomatic parameters: SE ILLUMI-
NACLIP:1:30:7 LEADING:3 TRAILING:3 SLIDINGWIN-
DOW:4:15 MINLEN:20]. The trimmed reads were mapped 
to the Drosophila melanogaster genome r6.14 using STAR 
(Dobin et al., 2013), and uniquely mapped reads were as-
signed to the set of 17727 genes annotated for the r6.14 ge-
nome using feautureCounts from the package Subread [pa-
rameters: -t exon –g gene_id] (Liao et al., 2014). At this point, 
only RNA samples with more than 500,000 reads assigned to 
genes and matching DNA samples (see below) were kept for 
further analysis. Finally, only genes present on the auto-
somes (2L, 2R, 3L, 3R, 4) and chromosome X were kept for 
downstream analysis. This resulted in 940 samples with 
RNA derived from head tissue (average gene counts per sam-
ple: 3M), and 939 with RNA derived from body tissue (aver-
age gene counts: 2.4M) (Fig. S17). At the gene level, only 
genes with mean CPM>1 and we only kept genes for which 
at least 20% of individuals in the population were assayed 
(with CPM>1 for the particular gene). These filters removed 
not-expressed and lowly expressed genes which corre-
sponded to roughly half of the 17727 genes present in the 
Dmel r6.14 annotation file (51% of the head genes, and 53% 
of body genes). The final dataset used for further analysis 
consists of RNA samples that have DNA matching samples 
(see section ‘Processing of DNAseq data and SNP calling’): 
940 RNA samples derived from head tissue expressing 8877 
genes, and 939 RNA samples derived from body tissue ex-
pressing 8391 genes. 593 samples were derived from head 
and body tissue from the same individual fly, while the rest 
(n=693) correspond to one tissue per fly. The vast majority 
of genes were detected in more than 90% of the samples (79% 
and 76% of head- and body-expressed genes). On average, 
each gene was detected in 873 and 858 samples in head and 
body tissue, respectively (median = 938, 931 respectively). 
 
DNA extraction and library preparation 
 
DNA was extracted from the body or head lysate used to first 
extract mRNA in the following way: after mRNA bound to 
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the Dynabeads™ in step 13 of the RNA extraction protocol 
(see https://lufpa.github.io/TM3Seq-Pipeline/mrna_extrac-
tion), the supernatant was transferred to a deep 96-well plate 
and mixed with 400ul of genomic lysis buffer (Zymo, 
#D3004-1). The mix was stored at -20C to await further pro-
cessing. Samples were transferred to an Acroprep advance 
1mL DNA binding plates (Pall Life Sciences, #8132) for DNA 
extraction using the Multi-Well Plate Vacuum Manifold 
(Pall Life Sciences, #5017) and DNA pre-wash, and gDNA 
wash buffers from Zymo (#D3004-1, #D3004-5). DNA li-
brary preparation was also performed in 96-well plates, fol-
lowing the tagmentation approach outlined in Picelli et al. 
(2014) and implemented in a CyBio® FeliX liquid handling 
robot (Analitik Jena). Details can be found in Supplemen-
tary Methods. 
 
Processing of DNAseq data and SNP calling 
 

DNA reads were mapped to the D. melanogaster reference ge-
nome r6.14 using BWA (Li & Durbin, 2009) while preserving 
lane identity for samples that were sequenced in multiples 
lanes or batches. Secondary alignments were removed, and 
duplicated reads were marked using the function MarkDu-
plicates in Picard (http://broadinstitute.github.io/picard). 
Samples with <500 PE reads were removed. The distribution 
of mean coverage per sample can be seen in Fig. S18 (average 
coverage of samples with head RNAseq data = 6x, and sam-
ples with body RNAseq data = 6.6x). To first create a set of 
high-quality SNPs for this population, we used a set of 210 
samples with coverage > 8x (mean coverage 10x). Polymor-
phic sites were called for individual samples using Haplo-
typeCaller (-ERC GVCF), and joint variant calling for all 
samples was done with GenotypeGVCFs, both implemented 
in GATK v4.1.3.0. The resulting set of SNPs were hard-fil-
tered following the Best Practices recommendations from 
GATK adjusted to the empirical distribution of our SNPs pa-
rameters. Using SelectVariants, we implemented filters at 
two levels, first to account for overall coverage parameters 
(remove if: singleton, total coverage <500 or >5000, average 
coverage <5x or >25x, present in <50% individuals), and sec-
ond to account for site-specific quality parameters (remove 
if: QD<5.0, MQ<50.0, FS>10.0, SOR > 0.2, MQRankSum < 
-2.0 or > 2.0, -ReadPosRankSum < -2.0 or > 2.0, ExcessHet< 
10.0 -this corresponds to a probability of violating HW equi-
librium due to heterozygote excess < 0.1). These filters re-
sulted in a high-quality set of 1,128,092 biallelic SNPs with 
MAF>1% that we refer to as dbNex. To verify the quality of 
the SNP calls in the Nex population used here, we compared 
dbNex with SNP datasets from DGRP2 (Huang et al., 2014; 
Mackay et al., 2012) and the Global Diversity Lines (Grenier 
et al., 2015); 87% and 97.6% of the dbNex sites were validated 
in these populations, respectively.  
 
Using dbNex as “known dataset”, we performed base quality 
score recalibration (BQSR) for the 1286 samples that had 
matching head or body RNAseq data, and then we called 
SNPs using HaplotypeCaller and GenotypeGVCFs in GATK. 
We attempted extensively to optimize GATK’s VQSR 

algorithm to filter our final set of variants based on parame-
ters learned from dbNex, DGRP2, and GDL SNP sets, but we 
did not obtain reliable thresholds to call high-quality SNPs. 
Therefore, we decided to filter the final set of SNPs using 
hard thresholds similar to the ones described above follow-
ing GATK recommendations adapted to the empirical distri-
bution of parameters from our fly samples (filters used in 
GATK’s SelectVariant;  keep if: ExcessHet<54.69 – corre-
sponds to a probability to violate HW due to heterozygote 
excess 3.4e-6, biallelic site, present in at least 500 individuals, 
mean coverage <22x, MQ>50, QD>2.0, FS<60, SOR<3, -
2.0<MQRankSum<2.0, -2.0<ReadPosRankSum<2.0). Ad-
ditionally, given that many of our individual samples have 
low coverage (see Fig. S18), we set to NA all individual gen-
otypes with Genotype Quality (GQ) <9 corresponding to a 
level of confidence of 87.5%. To do this, we first mark these 
sites using VariantFiltration, and then SelectVariants --set-
filtered-gt-to-nocall. 52 Individuals with <20% genotyping 
rate were removed.  Finally, for each tissue, sites with 
MAF<5%, present in less than 20% of individuals, and with 
HW p-adj for heterozygote excess <1e-7 and heterozygote 
deficit <1e-40 were removed. We used two different thresh-
olds for HW equilibrium because heterozygote excess is 
highly correlated with technical artifacts while heterozygote 
deficit is a known consequence of low-coverage datasets like 
ours (Benjelloun et al., 2019). These filters resulted in a set 
of 854,350 SNPs. Using Plink (Purcell et al., 2007), we re-
moved one member of SNP pairs with r2>0.8 using a sliding 
window of 1000 SNPs with a 5 SNP offset. This step removed 
over half of the sites, resulting in 389,896 sites used for map-
ping. As a final quality check, we removed 4 samples which 
relatedness was larger than 1 using --rel-cutoff 0.99 in Plink. 
The final VCF file consists of 1286 samples matching 940 
head RNA samples and 939 body RNA samples.  
Coverage, genotyping rate per individual and number of in-
dividuals with genotype data for each site are shown in Fig. 
S18.  
 
 
Patterns of genetic variation in the mapping 
population 
 

To characterize the genetic structure and variation in the 
mapping population we analyzed all 1286 DNA samples and 
854,350 SNPs passing the quality control filters described 
above, but that had not been pruned based on LD.  Using 
VCFtools (Danecek et al., 2011) we first estimated r2 be-
tween all pairs of SNPs in 1000bp windows (--geno-r2 --ld-
window-bp 1000) excluding the pericentromeric and telo-
meric low recombination regions by removing the first 5Mb 
and last 15Mb from chr 2L, 2R, 3L, 3R and X, and the first 
100kb and last 900kb of chr 4. The plots shown in Fig. S1 
represent the smoothed relationship between LD and ge-
nomic distance calculated using Loess regression imple-
mented in the loess function in R, using the smoothing pa-
rameter span=0.50. MAF was calculated using --freq in 
VCFtools; note that the allele frequency spectrum is trun-
cated at MAF 0.05 because the sites used here were 
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previously filtered based on MAF. Inbreeding coefficient (f) 
was estimated using the --het function, and relatedness us-
ing --relatedness. Nucleotide diversity per-site (π) was esti-
mated in a subsample (n=320) of the best covered DNA sam-
ples (8x > coverage < 12x). VCF files for these 320 samples 
were re-generated to include variant as well as invariant sites 
using GenotypeGVCFs with the flag --include-non-variant-
sites in GATK. Then, in VCFtools, while removing indels (--
remove-indels) and keeping only mono- and bi-allelic sites 
(--min-alleles 1, --max-alleles 2), π per site and π in 1Kb win-
dows was estimated using --site-pi and --window-pi 1000, re-
spectively. Windowed π estimates were used to estimate 
chromosomal level π shown in Fig. S1, and using custom 
scripts π per gene was estimated as the average of per site-pi 
across gene length (see Fig. 2). 
To evaluate whether large-scale genetic structure was pre-
sent in the Nex population, we first generated the Genetic 
Relatedness Matrix (GRM) for all samples using SNPs 
pruned for LD>0.8 (n=389,896) using the command –make-
grm-bin in GCTA (Yang et al., 2011), and then extracted the 
first 10 PCs with the option –pca (Fig. S2).  
 
RNAseq data normalization and covariates 
 

Raw RNAseq counts per tissue were normalized by library 
size and composition using the function voom (Law et al., 
2014) implemented in the R package limma (Ritchie et al., 
2015) and the normalization factors estimated with 
calcNormFactors from the package edgeR (Robinson et al., 
2010). The resulting data (log2(CPM)) is normally distrib-
uted, conforming to linear modelling assumptions and con-
trolling for outliers typical of RNAseq count data.  
 
All samples were processed in 96-well plates according to 
their respective round of egg lay and eclosion date (i.e., each 
plate contains samples from the same egg lay and eclosion 
date) to library sequencing, and therefore we use plate ID as 
the main variable accounting for batch effects in our dataset. 
For RNAseq samples derived from body tissue, accounting 
for plate effect was enough to remove latent structure in the 
data, and it was therefore used as the only covariate for 
downstream analysis. In contrast, in RNAseq data derived 
from head tissue, plate ID was not enough to remove batch 
structure and therefore we used the first three surrogate var-
iables (SV) in addition to plate ID as covariates in follow-up 
analysis. SV discovery was done with the R package sva 
(Leek & Storey, 2007) using a null model that included plate 
ID as a predictor.   
 
eQTL mapping 
 

To identify genetic variation regulating transcript abun-
dance, we used GEMMA (X. Zhou & Stephens, 2012). Details 
on the comparison between GEMMA and Matrix eQTL 
(Shabalin, 2012) can be found in Supplementary Material 
and Fig. S19.  
Given that not all individual flies were sampled for both, 
body-RNAseq and head-RNAseq (i.e., head and body tissue 

taken from the same individual), the individuals used for 
eQTL mapping in each tissue are different. We therefore es-
timated in GEMMA two GRM, one for each tissue, using the 
389,896 quality-filtered and LD pruned SNPs (MAF>0.5) us-
ing the following parameters: -grm -miss 0.5 -gk 2. Voom-
transformed gene counts were modelled independently for 
each tissue: head eQTL mapping, 940 samples, 8877 genes, 
plate ID and SV1-3 as covariates; body eQTL mapping, 939 
samples, 8391 genes, plate ID as covariate. GEMMA param-
eters: -miss 0.5 -lmm 1. 
To distinguish cis-eQTL and trans-eQTL, the results from 
GEMMA were processed in the following manner: First, cis 
SNPs were defined as sites within 10kb from the gene body, 
and trans SNPs as any other SNPs in the genome. Out of the 
8877 genes expressed in the head, 8834 have SNPs in cis. Out 
of the 8391 genes expressed in the body, 8357 have SNPs in 
cis. This resulted in a total of 675,425 cis and 3,153,807,913 
trans SNP-gene tests in the head dataset, and 632,149 cis and 
3,096,239,321 trans tests in the body dataset. Then, because 
not all p-values were recorded due to the very large number 
of tests, p-values for cis- and trans-eQTL tests were adjusted 
for multiple testing using an FDR approach modified for the 
situation where p-values for all tests are not known, but the 
total number of tests is known. For this, we used the func-
tion p.adjust implemented in R (R Core Team, 2021), setting 
n to the known number of cis and trans tests. A threshold of 
5% FDR was used to determine significance in each tissue. 
Shared eQTLs between tissues were defined as eQTLs with 
FDR < 0.05 in both tissues, and tissue-specific eQTLs as FDR 
< 0.05 in one tissue and FDR > 0.05 in the other. 
  
Heritability estimates 
 

We estimated the amount of variance in gene expression ex-
plained by the set of 389,896 LD-pruned SNPs (MAF>0.05) 
and the standard error of the estimate using GEMMA (X. 
Zhou & Stephens, 2012). GEMMA provides the percent var-
iance explained (PVE) which corresponds to the ‘SNP herit-
ability’. The minimum SNP heritability output by GEMMA 
is 9.9999e-6 and is usually associated with extremely large 
error intervals. Given that there is no confidence in such es-
timates, we exclude those genes from further analyses in-
volving SNP heritability estimates. 
 
Saturation curve 
 

To assess the effect of sample size in eQTL discovery, we 
mapped eQTLs using subsets of 200, 400, 600 and 800 sam-
ples, in addition to the full dataset of 939 body and 940 head 
samples (Table S2). The datasets were created in the follow-
ing way for each tissue: the full dataset of raw gene counts 
was randomly down-sampled to 200 individuals, genes with 
CPM<1 and detected in less than 20% of the samples were 
removed. The treatment of the raw RNAseq counts, eQTL 
mapping, and heritability estimates was the same as de-
scribed before for the full dataset.  
 
SNP annotation 
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We annotated the SNPs used for eQTL mapping using two 
approaches. First, we used SNPeff (Cingolani et al., 2012) to 
determine the position in the genome (genic, intergenic, in-
tron, exon, etc.) and the predicted impact on protein coding 
sequences (synonymous or non-synonymous changes) for 
all 389,896 SNPs. Secondly, we used the deep learning ap-
proach implemented in DeepArk (Cofer et al., 2021) to pre-
dict the regulatory impact of cis-SNPs (SNPs located within 
10Kb of any gene) on the expression of their cis-genes (genes 
identified in our eQTL mapping). DeepArk uses 1552 D. mel-
anogaster experimental datasets to predict regulatory impact 
based solely on the DNA sequence surrounding the SNP of 
interest. These datasets cover a wide range of tissues and de-
velopmental stages, but here we focus on the predictions 
based on the 245 assays performed in adult Drosophila be-
cause this is the developmental stage used in the current 
study. For each cis-eQTL we estimate the impact of a SNP on 
gene regulation as the predicted effect of reference allele mi-
nus predicted effect of alternative allele (ref-alt), and report 
the largest predicted effect size out of the 245 predictions 
made by DeepArk. This measure reflects the importance of 
a site in impacting gene regulation, i.e., if the predicted effect 
of reference and alternative alleles is very different, then the 
SNP potential to be involved in regulation of gene expression 
is high. If the effect, on the contrary, is very similar, then 
having one or the other allele is not relevant for determining 
the levels of expression of the focal cis-gene.  
 
Differential gene expression analysis 
 

To detect the genes that are differentially expressed between 
head and body, raw gene counts of genes expressed in each 
tissue were merged, resulting in 7795 genes common to both 
tissues. The raw gene count dataset containing both tissues 
was processed through the following steps: first, TMM nor-
malization factors were calculated with the calcNormFac-
tors function from the R package edgeR (Robinson et al., 
2010). Then, using the voom function in the R package 
limma (Law et al., 2014; Ritchie et al., 2015) raw counts were 
log-transformed and normalized using the normalization 
factors estimated in edgeR to control for library size and li-
brary composition, and precision weights for each gene-sam-
ple pair were estimated to control for the mean-variance re-
lationship inherent to RNAseq data. Finally, given the pres-
ence of latent factors driving structure in the head transcrip-
tomes (see section “RNAseq data normalization and covari-
ates”), surrogate variables (SV) were estimated for the joint 
voom-transformed dataset using the R package sva (Leek & 
Storey, 2007). The first four SVs were sufficient to correct for 
the remaining structure in head transcriptomes and there-
fore were used as covariates, in addition to plate ID (see sec-
tion “RNAseq data normalization and covariates”). 
As described in the section “eQTL mapping”, some RNAseq 
samples were derived from the head and body of the same 
individual fly, making our dataset partially paired, with 801 
independent samples (401 flies with only head RNA, and 400 
flies with only body RNA) and 539 paired samples (539 flies 
with RNA data from head and body). To account for this, we 

estimated the within-individual correlation for each gene us-
ing the function duplicateCorrelation from the R package 
limma (Ritchie et al., 2015) on the voom-derived object, 
while specifying the model design and blocking the individ-
ual fly ID. Lastly, we modelled differential expression be-
tween tissues by fitting a linear model to the voom-derived 
object (contains log-transformed normalized counts and 
precision weights) using the function lmFit in the same R 
package, and including plate ID and SV1-SV4 as covariates. 
Parameters used in lmFit: block=individual ID, correla-
tion=consensus correlation obtained from duplicateCorre-
lation as explained above. Differentially expressed genes 
were called at 5% FDR. 
 
Transcriptional structure and modularity 
 

To explore the structure of D. melanogaster transcriptome, 
we used a subset of the best covered samples per tissue, each 
one with more than three million RNAseq reads assigned to 
genes (average gene counts: head = 4.65M, body = 4.58M). 
This resulted in 248 body-RNAseq samples, and 318 head-
RNAseq samples that were down-sampled to 248 to match 
the sample size of body transcriptomes. At the gene level, we 
kept the 5538 and 5269 genes expressed in body and head, 
respectively, that had mean CPM>1 and that were detected 
in all samples. Such filters result in a dataset that allows us 
to get more accurate estimates of the correlation strength be-
tween gene pairs, especially those that involve lowly ex-
pressed genes.  
 
The raw gene count matrices were voom-transformed and 
surrogate variables were estimated for the head dataset as 
described in sections “eQTL mapping” and “Differential 
gene expression analysis”. To render gene count matrices 
ready for modularity analysis, we removed the effect of batch 
effects from the voom-transformed matrices (head batches: 
plate ID and SV1-2; body batches: plate ID) using the `func-
tion removeBatchEffect from the R package limma (Ritchie 
et al., 2015). We estimated the Spearman correlation for all 
gene pairs in the batch-free expression matrix, and only re-
tained edges supported by p-values at FDR 1% for head and 
0.1% for body. Because edges with large p-values are re-
moved, a portion of genes end up being not connected to any 
other gene in the transcriptome, this resulted in a final da-
taset of 5261 and 5124 genes for head and body matrices. 
These FDR thresholds were chosen to reduce the density of 
the networks as much as possible without removing too 
many unconnected genes. Since the density of the body 
graph is higher, we used a more stringent FDR for this tissue. 
The reduction in density vastly speeds up the computational 
burden of fitting the subsequent models and allows the anal-
ysis to be driven by well-supported edges. 
 
We used the Weighted Nested Degree Corrected Stochastic 
Block Model (SBM) (Karrer & Newman, 2011; Peixoto, 2017) 
to cluster genes into blocks. We call gene clusters derived 
from this approach blocks and not modules because the SBM 
does not cluster genes following the traditional definition of 
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modularity, i.e., higher within- than between-module corre-
lations, but instead uses a Bayesian approach to maximize 
the posterior probability of the transcriptome partition given 
the observed network and edge weights. In this sense, the 
SBM allows for the discovery of transcriptional structure 
that is not driven by modularity in its traditional definition. 
To increase the resolution of the transcriptional partition, 
we used a nested SBM which clusters genes into blocks in a 
hierarchical manner, further partitioning blocks into 
smaller ones for several consecutive levels of the hierarchy 
(Peixoto, 2017). The nested SBM was fit in graphtools v2.45, 
using the NestedBlockState model object, with the edge 
weights given by the arctanh transformed Spearman corre-
lations between gene expressions. The arctanh transfor-
mation allows the edge weights to be modeled using normal 
distributions. The model was fit in three steps: first, an initial 
partition was obtained with the mcmc_anneal function, 
which uses Markov Chain Monte Carlo (MCMC, (Peixoto, 
2014)) and simulated annealing (Kirkpatrick et al., 1983) to 
find a partition of the genes into blocks at every level of the 
SBM hierarchy. Using this initial partition, we then use the 
mcmc_equilibrate function to find a partition such that sub-
sequent proposals do not improve the posterior probability 
of the current partition for at least 1000 proposals. The 
method for fitting the nested SBM using MCMC is described 
in (Peixoto, 2020). At this point, we consider the block parti-
tion is equilibrated and we can use MCMC to sample from 
the posterior distribution of the block partition. Finally, the 
posterior sampling is done for 1000 iterations using the 
mcmc_equilibrate function, and this posterior sample is the 
partition we use in subsequent analysis. When fitting a 
nested SBM, the initial annealing step is not always required, 
but in our case, using this step substantially improved com-
putational performance and allowed us to use the full set of 
genes in the analysis.   
 
To assess the importance of modularity (as defined above) 
for transcriptional structure, for each gene block in each 
level of the hierarchy, we estimated its assortativity, i.e., the 
contribution of each block to the transcriptome-wide level of 
modularity (Zhang & Peixoto, 2020) (Figure 4B, Table S3). 
Assortativity ranges from -1 to 1, with negative numbers in-
dicating that genes in the respective block are less correlated 
with each other than to genes in other blocks, and therefore 
that block does not contribute to the modularity of the tran-
scriptome at that level of the hierarchy. Positive numbers in-
dicate that genes in that block behave like modular genes. 
To see a detailed description of the SBM method, a compar-
ison with traditional modularity-based clustering ap-
proaches like WGCNA, and a discussion of its implications 
for the understanding of transcriptome structure, see Melo, 
in prep. 
 
Gene connectivity 
 

To determine the level of connectivity of each gene in the 
transcriptome we used two different metrics estimated using 
the whole dataset (head samples and genes = 940, 8877; body 

samples and genes = 939, 8391). First, we estimated the 
Spearman correlation between all gene pairs, and retained 
the correlations significant at an FDR 1%. This threshold re-
tained all genes, meaning that all genes retained at least one 
gene partner after non-significant correlations were re-
moved. Then, we estimated for each gene: a) the number of 
genes connected to the focal gene (degree), and b) the aver-
age correlation between the focal and the connected genes 
(average correlation).  
 
GO terms and chromosomal enrichment analysis 
 

ShinyGO v0.77 (Ge et al., 2020) and clusterProfiler v4.2.2 
(Wu et al., 2021) were used to calculate the enrichment of 
gene sets using Biological Process GO terms. The back-
ground of genes varies depending on the analysis, e.g., in 
Figure 1 the background for each tissue corresponds to all 
genes expressed in that tissue, but for Fig. S1 the background 
includes only genes expressed in both tissues. The number 
of enriched GO terms shown and the FDR threshold is indi-
cated in each figure. Chromosomal enrichment was also cal-
culated in ShinyGO using the same background as for GO 
term enrichment, for this we used sliding windows of 6Mb 
in steps of 3Mb and the hypergeometric test. Significantly 
enriched regions are defined as FDR 1e-5.  
 
Validation of candidate cis-eQTL effects in outbred 
flies 
 

To validate the effect of cis-eQTL on the expression level of 
the focal gene, we implemented the approach described in 
(Wolf et al., 2023). We created small outbred populations so 
that each one was homozygous for one allele at the particu-
lar candidate cis-eQTL. For this, we randomly sampled hun-
dreds of virgin male and female flies from the same popula-
tion used for the eQTL mapping (there is a ~100 generations 
gap between this and the sampling done for the eQTL map-
ping experiment). While anesthetized with CO2, we re-
moved one leg per fly and used it for DNA extraction and 
genotyping. In the meantime, each fly was housed in a sep-
arate vial and then mated with individuals of the same gen-
otype. 
DNA was extracted following the protocol for QuickEx-
tract™ DNA Extraction (cat no. QE09050). The region 
around the candidate eQTLs was amplified using custom-
made primers (Table S8b). Individually barcoded amplicon 
libraries were prepared using Illumina i5 and i7 primers. Li-
braries were pooled and sequenced at the Genomics Core 
Facility of Princeton University using the Miseq nano 150bp 
PE reads. Genotypes at each focal eQTL were called using 
bcftools mpileup (Li, 2011) with parameters -Ou -B -q 60 -Q 
28 -d 1000 -T -b files | bcftools call -Ou -m -o. 
 
Each population was started from ten individuals of the 
same focal genotype (five males, five females) which were 
used to set up five crosses. 10 female and 10 male offspring 
from each cross were then combined in one bottle where 
they mated freely for two generations. The resulting 
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populations are the mosaic of ten founder genomes, and 
share a particular allele at the candidate cis-eQTL. Given the 
large undertaking that this experiment implies, we chose for 
validation only five ciseQTL-gene pairs (corresponding to 
three unique SNPs, and to three genes Midway, CG7497, and 
Ach. Table S8a). Besides being genome-wide significant in 
the eQTL mapping in both tissues (head and body), the can-
didate eQTLs have MAF>0.2 to increase the probability that 
a random sample of the population will contain some flies 
homozygous for the minor allele, are associated with only 
one gene in cis (but could be regulating different genes in 
each tissue), and have large DeepArk predicted effects >10%. 
 
RNA extraction and qPCR 
 

For each population, four pools of seven-day old female flies 
(mated) were collected. If the candidate eQTL had an effect 
in head tissue, each pool consisted of 11 heads, if the effect 
was to be tested in the body, each pool consisted of three 
bodies. Gene expression was only quantified in females to 
match the eQTL mapping experiment. Each pool of heads or 
bodies was placed in a well of 96-well plates and total RNA 
was extracted using Quick-RNA 96 Kit by Zymo Research 
(Catalog no. R1053). 350 ng of RNA were used as input for 
cDNA synthesis using SuperScript™ III First-Strand Synthe-
sis System by Invitrogen (Catalog no. 18080051), and rt-
qPCR (using PowerTrack™ SYBR Green Master Mix by Ap-
plied Biosystems Catalog no. A46012) was used to quantify 
gene expression in each pool. The rt-qPCR primers used to 
amplify the target genes as well as the reference gene rpl32 
are shown in Table S8c. The rt-qPCR assay was run in a 384-
well plate that included all samples for all candidate eQTL-
gene pairs.  
Data analysis 
 
Raw qPCR data without baseline correction was imported 
into LinRegPCR v2020.0 (Ramakers et al., 2003; Ruijter et 
al., 2009) where the PCR efficiency for each primer pair was 
estimated. Deviation from the expected PCR efficiency of 
two is known to cause large biases in the estimation of fold 
changes in gene expression (Ramakers et al., 2003; Ruijter et 
al., 2009). LinRegPCR uses linear regression of log (fluores-
cence) to estimate the PCR efficiency per sample, and uses 
the average efficiency of all samples per amplicon group (i.e., 
per primer pair) to estimate the amount of starting RNA con-
centration per sample (N0) in arbitrary fluorescence units. 
The amount of starting RNA per sample is then estimated as 
the ratio of N0 for the target gene (gene affected by eQTL) 
and N0 for the reference gene (rpl32). The difference in gene 
expression levels between genotypes at a particular eQTL 
was tested using t.test (see Table S8a for results and sample 
size). 
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