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Significance

 How adaptations are built 
genetically depends on if and 
how genes interact with one 
another. To investigate this 
question, we tracked genetic 
changes over 100 generations in 
fruit flies adapting to high-sugar 
diets, showing that adaptation is 
not only highly polygenic but also 
shaped by interactions between 
genes (epistasis). Our 
longitudinal approach reveals 
that natural selection favors 
specific gene combinations, as 
seen in coordinated genetic shifts 
and unexpected patterns of 
genetic variation. These findings 
provide a framework for 
identifying the genomic footprint 
of epistasis in evolving 
populations and offer insights 
into the complex genetic 
architecture that underlies 
adaptation to environmental 
challenges.
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Evolutionary adaptation to new environments likely results from a combination of 
selective sweeps and polygenic shifts, depending on the genetic architecture of traits 
under selection. While selective sweeps have been widely studied, polygenic responses 
are thought to be more prevalent but remain challenging to quantify. The infinitesimal 
model makes explicit the hypothesis about the dynamics of changes in allele frequencies 
under selection, where only allelic effect sizes, frequencies, linkage, and gametic dise-
quilibrium matter. Departures from this, like long- range correlations of allele frequency 
changes, could be a signal of epistasis in polygenic response. We performed an Evolve 
& Resequence experiment in Drosophila melanogaster exposing flies to a high- sugar 
diet for over 100 generations. We tracked allele frequency changes in >3000 individ-
ually sequenced flies and population pools and searched for loci under selection by 
identifying sites with allele frequency trajectories that differentiated selection regimes 
consistently across replicates. We estimate that at least 4% of the genome was under 
positive selection, indicating a highly polygenic response. The response was dominated 
by small, consistent allele frequency changes, with few loci exhibiting large shifts. We 
then searched for signatures of selection on pairwise combinations of alleles in the new 
environment and found several strong signals of putative epistatic interactions across 
unlinked loci that were consistent across selected populations. Finally, we measured dif-
ferentially expressed genes (DEGs) across treatments and show that DEGs are enriched 
for selected SNPs. Our results suggest that epistatic contributions to polygenic selective 
response are common and lead to detectable signatures.

polygenic selection | epistasis | Drosophila | evolve and resequence | artificial selection

 The genetic basis of evolutionary adaptation depends fundamentally on the architecture 
of traits under selection. While early research focused heavily on identifying individual 
genes with large effects that undergo selective sweeps ( 1 ,  2 ), we now understand that most 
adaptive responses involve more subtle changes across many loci ( 3 ,  4 ). This emphasis on 
single-gene effects has created a biased view of adaptation in the literature ( 4 ), even though 
cataloged examples exist in both humans and other species ( 5 ,  6 ).

 Beyond identifying and just counting the number of genes involved, understanding 
adaptation requires considering how genes interact with each other (epistasis) and with 
the environment ( 7 ). The extent to which epistasis is important for polygenic response is 
still an open question ( 7       – 11 ), but theory suggests it should leave two detectable signatures: 
correlated changes in allele frequencies between interacting loci, even when unlinked ( 12 ), 
and gametic disequilibrium in adapted populations as allelic combinations are selected 
for or against—resulting in deviations from two-locus Hardy–Weinberg proportions 
between pairs of unlinked loci ( 13 ,  14 ).

 Evolve and Resequence (E&R) experiments provide an ideal framework for studying 
these complex adaptive processes ( 15 ). By tracking allele frequencies over time in both 
selected and control populations, we can distinguish between adaptation to laboratory 
conditions and responses to specific selective pressures. Environmental stress can also 
reveal previously hidden genetic interactions ( 16 ,  17 ), allowing us to identify epistatic 
combinations that become advantageous in new conditions.

 Dietary change represents a particularly informative source of environmental stress. 
In Drosophila melanogaster , exposure to high dietary sugar triggers complex metabolic 
and behavioral responses ( 18 ) involving coordinated changes across multiple systems: 
sugar absorption and metabolism ( 19 ), feeding behaviors ( 20 ), and gene expression 
patterns, particularly in digestive and metabolic pathways ( 21 ,  22 ). Chronic high-sugar 
exposure can lead to obesity, diabetes-like symptoms, cardiovascular problems, and 
reduced lifespan ( 23 ,  24 ). This broad physiological impact suggests that adaptation to 
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high-sugar should involve multiple interacting gene networks 
under strong selection.

 Here, we conducted an E&R experiment exposing replicate 
 D. melanogaster  populations to either high-sugar or control diets 
for 100 generations, starting from the same base population. 
We performed whole-genome sequencing on flies from six pop-
ulations at generations 1, 11, 25, and 100, giving a total of 
almost 3,000 sequenced individuals ( Fig. 1A  ). We identified 
two major directions of genetic change: a primary response 
shared across all populations, reflecting laboratory adaptation, 
and a secondary response specific to high-sugar selection. While 
at least 4% of the genome showed signatures of positive selec-
tion under high-sugar conditions, the selected loci do not show 
archetypal signals of selective sweeps. This highly polygenic 
response appears to operate largely through regulatory changes, 
as selected regions were enriched among differentially expressed 
genes. Additionally, we found evidence for epistatic selection 
through correlated allele frequency changes and gametic dise-
quilibrium between unlinked loci, patterns that Wright–Fisher 
simulations suggest are unlikely without epistatic interactions. 
Though we cannot directly measure epistatic effects on pheno-
types, our results indicate that epistatic interactions commonly 
contribute to polygenic adaptation and leave detectable genomic 
signatures.         

Results

Polygenic Selection Response. To study the effect of long- term 
selection in a stressful environment, we maintained three replicate 
populations of flies under high- sugar stress and three under 
control conditions for 100 generations. To assess adaptation to 
the high- sugar environment, we performed a factorial egg- lay 
experiment, measuring the fecundity of both control and high- 
sugar (HS) populations on both diets. Both populations showed 
higher fecundity on their corresponding diet (Fig. 1D), indicating 
successful adaptation. We collected data from 100 individuals at four 
time points, obtaining both allele frequencies from Pool- seq and 
genotypes from individual sequencing (Fig. 1 A and C). This time 
series genomic data allowed us to analyze allele frequency changes 
and identify the primary drivers of genetic change in response 
to the stressful environment. After quality control (Methods), we 
obtained allele frequency estimates for ~1.76 M SNPs, representing 
4 time points × 3 replicate populations × 2 treatments × 1.76 M 
SNP genotype calls. To identify the main drivers of genetic change 
without prior assumptions, we performed Principal Component 
Analysis (PCA) of the allele frequencies across the entire selection 
experiment. The first two principal components (PCs), explaining 
17% and 13% of the variance, corresponded to time and selection 
regime, respectively (Fig. 2, SI Appendix, Fig. S3). This unsupervised 

Fig. 1.   Selection experimental design. (A) Scheme of the experimental design. A synthetic outbred population was created by a round- robin cross of 16 inbred 
lines from the Netherlands. This population (NEX) was kept as an outbred population for over 50 generations before the start of the selection experiment. 
Starting from NEX, 3 control (control) and 3 treatment (hs) populations of around 5,000 individuals were kept for 100 generations. Samples of one hundred 
individuals were taken at generations 1, 11, 25, and 100 for allele frequency tracking. (B) Linkage disequilibrium (LD) decay across hs and control populations 
at generation 100. NEX derived populations have very low levels of LD. (C) Minor allele frequency across generations. (D) Egg- lay measurements after selection 
showing the adaptive response to the high- sugar environment in hs populations.D
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approach identified time and high- sugar selection as the two 
main drivers of genome- wide genetic change. Notably, the time 
dimension, captured by the first PC, explained more variance than 
the selection regime, captured by the second PC. This indicates 
that all six populations experienced common selection pressures, 
presumably related to a shift to a laboratory cage environment and 
appearance of many other competing genotypes with high- sugar 
exposure representing the second largest driver of genetic change 
(Fig. 2, SI Appendix, Fig. S3).

High- Sugar Selection on Individual Loci. To identify individual loci 
under selection, we fitted a univariate regression model for each 
SNP, incorporating allele frequencies across all time points, replicate 
populations, and selection regimes (Methods). This model identifies 
SNPs whose allele frequency changes in the same direction over 
time in all replicate populations. The time coefficient in the model 
captures changes that are similar across all six populations (Fig. 3A), 
while the time- by- selection- regime coefficient captures changes that 
are unique to one selection treatment (Fig. 3 B and C). The P- values 
of the time coefficient were highly correlated with SNP loadings 
onto PC1 (cor = 0.59, P < 10−16, SI Appendix, Fig. S2), while those 
of the time- by- regime coefficient were highly correlated with SNP 
loadings onto PC2 (cor = 0.68, P < 10−16, SI Appendix, Fig. S2), 
consistent with the first two PCs capturing time and selection 
regime effects.

 Different SNPs exhibited distinct allele frequency trajectories over 
time. Some responded similarly to selection in all replicate popula-
tions regardless of selection regime ( Fig. 3A  ), while others responded 
in opposite directions ( Fig. 3C  ) or in only one regime ( Fig. 3B  ). 
Our regression model allowed us to distinguish among these sce-
narios, and in subsequent analyses, we focus on selection signatures 
unique to the high-sugar selection regime. The Manhattan profile 
in  Fig. 2D  , showing the time-by-regime P -values, suggests a poly-
genic selection response, consistent with our observation that time 
and selection regime are the two main drivers of genetic change 
genome-wide ( Fig. 2 ).

 To relate the locus-specific results ( Fig. 3 ) to the genome-wide 
signal quantified by the PCA ( Fig. 2 , SI Appendix, Fig. S1 ), we 

repeated the PCA after excluding SNPs with regression P -values 
below various thresholds, effectively removing SNPs associated 
with the selection regime. Varying the significance threshold 
allowed us to evaluate the effect of the filtered SNPs on the PCA. 
Using a very conservative threshold that excluded only the most 
strongly selected SNPs, the PCA results remained largely 
unchanged, indicating that the PCA signal was not driven by a 
few loci under strong selection (SI Appendix, Fig. S2 ). We used 
these changes in the PCA as a heuristic to pick a P -value threshold 
of 8 × 10−12 , since PC2 no longer distinguish the different selection 
regimes when excluding SNPs with a P -value below this threshold 
(Fig. 8C ). SNPs passing this significance threshold are thus driving 
the majority of the selection response to high-sugar stress that we 
observe in the PCA.  

What Proportion of the Genome Is Responding to Selection? Using 
this conservative threshold, ~45 k SNPs showed a signature of positive 
selection unique to the high- sugar selection regime. Considering 200 
bp around every selected SNP, corresponding to an average r2 of 
0.2 (Fig. 1B), these SNPs span ~5.6 Mb, or ~4% of the mappable 
genome of D. melanogaster. Since the linkage disequilibrium (LD) 
around the selected loci is expected to be larger than the genome- 
wide average, this represents a conservative estimate. The magnitudes 
of allele frequency changes were relatively small. Between generations 
1 and 100, the mean change across all SNPs on the high- sugar 
selection regime was 0.11, while the mean change among selected 
SNPs was 0.25 (Fig. 4). Among all 1.76 M SNPs, only 4,753 showed 
a pattern where the minor allele at generation 1 reached fixation at 
generation 100 in at least one high- sugar population. Additionally, 
many SNPs displayed a delayed selection response, with the largest 
allele frequency changes occurring after generation 25 (Fig.  4). 
This pattern is consistent with theoretical predictions for polygenic 
adaptation involving independent loci (25, 26), but could also result 
from epistatic effects (27).

Do the Selected Alleles Show a Detectable Sweep Signature? 
Next, we asked whether the identified selection signatures 
coincided with the genomic footprint of selective sweeps. 

Fig. 2.   PCs one (x- axis) and two (y- axis) from the PCA on the genome wide allele frequencies across the entire selection experiment. Each line corresponds to 
one of the six experimental populations, red indicating high- sugar treatment and black control, with symbols marking the mean scores for each population and 
time point. The variance explained by each of the first 23 PCs is shown in the Inset.
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Using a core set of 20 k high- confidence SNPs, we estimated 
individual haplotypes at generation 100. These haplotypes 
were used to calculate the integrated Haplotype Score (iHS) 
(28) in the HS populations. A large iHS indicates an extended 
haplotype associated with one allele at a given SNP, a pattern 
characteristic of a selective sweep. The estimated iHS and the  
P- values from our regression model showed a small but significant 
correlation (cor = 0.07, P = 2.1 × 10−17, SI Appendix, Fig. S4), 
indicating a tendency for longer haplotypes at selected loci. 
The correlation was, however, very modest, suggesting that loci 
under selection based on our time series data did not display 
strong sweep- like patterns after 100 generations of selection. At 
a nominal significance threshold of P < 0.05, only 4.7% of the 

selected loci, as inferred from the regression analysis, displayed 
a significant iHS. These observations support a polygenic model 
of adaptation through subtle shifts in allele frequency at many 
loci, with selection acting primarily on standing genetic variation 
rather than novel mutations.

Effects of Polygenic Adaptation on Gene Expression. Much of 
the genetic variation for complex traits resides in gene- regulatory 
regions (29). Selection on complex traits would therefore likely act 
on this regulatory variation, resulting in gene expression changes. To 
characterize the effect of selection on gene expression, we performed a 
full reciprocal experiment where flies adapted to either high- sugar or 
control selection regimes were reared on either high- sugar or control 
conditions (Fig. 5). This design allowed us to account for both short- 
term plastic changes due to different diets and long- term selection 
effects. For each of the four experimental groups, we performed 
RNA- seq separately on bodies and heads (n ~ 40 per group; Methods). 
After quality control, we obtained expression data for 8,397 genes 
from body samples and 8,298 genes from head samples.

 Differentially expressed (DE) genes between flies adapted to 
the respective selection regimes were measured separately for head 
and body samples. At an FDR < 0.01, 1,155 and 578 genes 
showed differential expression in body and head samples, respec-
tively. We then examined how many of these DE genes occurred 
in regions with selection signatures. In both body and head sam-
ples, we found an enrichment of selected SNPs among DE genes 
( Fig. 5B  ). Starting at a P -value of 10−5  for the selection term, this 
enrichment became more pronounced with increasingly stringent 
selection P -values. The enrichment substantially exceeded the 
expected random overlap between selection signals and DE genes, 
as estimated from permutation tests, indicating that adaptation 
acted on regulatory genetic variants. While clearly regulatory 
variation does not account for all the variation, this proportional 
increase in enrichment with increasing signal strength (as meas-
ured by P -values) further supports our argument that regulatory 
variation played a key role in adaptation to high-sugar.  

Fig. 3.   Results from the per SNP regression model. Panels A–C show possible patterns of relevant and consistent allele frequency change across the six 
populations. We chose SNPs with strong signals for illustration, but many significant SNPs show more subtle allele frequency changes. Plotted are allele frequency 
trajectories of SNPs with significant linear trends under the specified model. (A) Consistent change in control and hs (B) consistent change in control only (C) 
hs and control differ. Both the examples shown in (B) and (C) would lead to a significant interaction term between time and treatment, but we filter SNPs that 
change only in Control (like in panel B); (D) Manhattan plot showing negative log10 transformed P- values from the regression analysis of allele frequency over 
time. The P- values correspond to the time- by- selection regime interaction coefficient in the model. A significant P- value indicates different trajectories in the 
two treatments. SNPs showing a selection response primarily in the control regime were excluded and are not shown.

Fig. 4.   Histograms showing mean changes in allele frequency in the 
populations exposed to the high- sugar selection regime, between generation 
1 and 11, 1 and 25, and 1 and 100. Panel (A) includes all 1.76 M SNPs and panel 
(B) includes the 45 k SNPs that show a signature of positive selection unique 
to the high- sugar selection regime.D
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Epistasis Across Selected Loci. The contribution of epistatic 
interactions to long- term selection response remains contentious, 
but several mechanisms could enable epistasis to influence 
polygenic response. For example, diminishing returns epistasis—
where increasing frequency of one allele decreases the fitness effects 
of alleles at other loci—has been empirically observed (30) and 
is implicit in stabilizing selection models describing population 
movement toward an optimum (25, 31, 32). Our access to allele 
frequency time- series and haplotype information allowed us to 
examine two distinct signatures of epistatic contributions to the 
observed polygenic selection response. In the presence of fitness 
epistasis, the trajectory of a given allele during selection depends on 
the trajectories of alleles at interacting loci (27). This dependence 
should result in two observable patterns: 1) correlations between 
allele frequencies at interacting loci, as changes at one locus are 
accompanied by corresponding changes at interacting loci; and 
2) gametic disequilibrium in adapted populations, where selective 
removal of unfavorable allelic combinations results in deviations 
from the two- locus Hardy–Weinberg proportions expected for 
unlinked loci (13).

 To explore the expected genomic footprint of selection under 
fitness epistasis versus strict additivity, we performed Wright–
Fisher simulations using the SLiM modeling framework ( 33 ). 
The simulations mimicked key aspects of our experiment, start-
ing with neutral populations containing ~3 k segregating SNPs 
in mutation-drift equilibrium distributed along two unlinked 
chromosomes. From these starting populations, we sampled 
1,000 segregating mutations to serve as quantitative trait loci 
(QTLs) contributing to the trait under truncation selection. We 
then simulated two scenarios: 1) an additive scenario, where the 
trait value depended only on additive QTL effects, and 2) an 
epistatic scenario, where we included both additive effects and 
additive-by-additive epistatic effects between 200 pairs of QTLs 
(one from each chromosome). After 100 generations of selec-
tion, we quantified gametic disequilibrium and correlated 
changes in allele frequency. We analyzed the same QTL pairs in 
both scenarios, with epistatic interactions present only in the 
second scenario. Gametic disequilibrium between unlinked loci 
was substantially higher under epistasis, 3 SD higher than ran-
dom pairs in the epistatic scenario, equal in the additive sce-
nario. Similarly, correlations between allele frequency trajectories 

of QTL pairs on different chromosomes differed from zero only 
in the epistatic scenario ( Fig. 6C  ).        

 Next, we searched for similar genomic footprints in our empir-
ical data. We focused on SNPs under strong selection unique to 
the high-sugar regime (time-by-regime P  < 8 × 10−12 ) with suffi-
cient coverage to confidently genotype many individual flies, 
yielding a set of 1.3 k SNPs. We estimated allele-frequency cor-
relations between these SNPs on the high-sugar regime, producing 
a SNP×SNP correlation matrix that revealed which SNPs moved 
in unison through time across all replicate populations ( Fig. 6 A  , 
 Lower  triangle). The corresponding SNP×SNP gametic disequi-
librium matrix showed which SNP pairs deviated from the 
expected proportions for unlinked loci in high-sugar selected 
populations ( Fig. 6 A  , Upper  triangle)

 Both allele frequency correlations and gametic disequilibrium 
were substantial between physically linked SNPs, as expected 
( Fig. 6A  , elements near the diagonal). We also observed numerous 
correlations between physically distant SNPs, indicating their 
allele frequencies changed similarly during selection. While this 
pattern could result from either epistasis or independent selection 
pressures acting on SNP pairs, we identified multiple cases of 
gametic disequilibrium between physically distant SNPs, specifi-
cally indicating epistatic selection. Comparing gametic disequi-
librium between high-sugar and control populations for SNPs 
showing positive selection unique to the high-sugar regime 
revealed a small but highly significant negative correlation (r = 
−0.06, P  < 10−16 ). In contrast, SNPs showing similar selection 
signatures in both treatments, likely due to lab adaptation, showed 
a positive correlation (r = 0.14, P  < 10−16 ). These patterns suggest 
two distinct mechanisms: First, epistatic selection causes gametic 
disequilibrium between physically distant SNPs when allelic com-
binations are selected on the high-sugar regime but neutral in 
controls. Second, allelic combinations beneficial in both regimes 
are similarly selected across all populations, producing comparable 
gametic disequilibrium patterns in both high-sugar and control 
populations.

 We identified 1,413 SNP pairs in the HS populations located 
on different chromosomes that displayed both gametic disequi-
librium (chi-square test, P  < 5.7 × 10−8 ) and correlated allele fre-
quencies (correlation test, P  < 0.001). To rule out population 
structure as a cause of gametic disequilibrium, we examined each 

Fig. 5.   Differential expression after selection. (A) Volcano plots showing differential gene expression between flies adapted to the high- sugar versus control 
selection regime, after controlling for the plastic effects related to each diet. Each point corresponds to one gene. The Y- axis shows the negative log10 transformed 
P- value of the differential expression, and x- axis shows the log2 transformed fold change. The two panels correspond to expression in body and head tissue. 
(B) Fraction of SNPs under positive selection on the high- sugar selection regime that coincide with a differentially expressed gene (y- axis), at different P- values 
for the selection signature (x- axis). Solid red lines show the observed fraction of SNPs overlapping DE genes and box- plots show the empirical null distributions 
obtained by measuring the overlap of the selected genes with random genomic regions of the same size as the DE genes. The two panels correspond to 
expression in body and head tissue.
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replicate population individually. While this approach had lower 
statistical power due to smaller sample sizes compared to analyzing 
all replicates jointly, it allowed us to control for population struc-
ture, which by design cannot exist within individual replicate 
populations. By retaining only signals supported by multiple 
linked SNPs at both chromosomal locations, and where gametic 
disequilibrium replicated in at least two replicate populations, we 
identified 11 pairwise epistatic selection signatures, each supported 
by between 5 and 63 SNP pairs ( Fig. 6B  ).   

Discussion

 Here, we tracked allele frequency trajectories of 1.7 million SNPs 
in replicate D. melanogaster  populations exposed to high-sugar 
stress, uncovering evidence for epistatic contributions to polygenic 
adaptation. While selection drove changes in allele frequencies 
across thousands of loci, the patterns of these changes revealed 
complex interactions among selected variants. Our key finding is 
that adaptation involved coordinated changes between physically 
unlinked loci, manifesting as both correlated allele frequency 

trajectories and gametic disequilibrium. Notably, these signatures 
were specific to high-sugar populations, consistently observed 
across replicates, and absent in controls, strongly suggesting they 
result from epistatic selection rather than demographic effects.

 PCA of the SNP allele frequencies in these population samples 
revealed a striking pattern: PC1 corresponded with generation time 
for both treatments, whereas PC2 cleanly separated the control from 
the high-sugar diet populations. First, we found that adaptation to 
laboratory conditions drove stronger genomic changes than the 
high-sugar treatment itself, highlighting the importance of con-
trolling for laboratory adaptation in experimental evolution studies. 
Second, our results demonstrate that adaptation to high-sugar envi-
ronments occurs through subtle allele frequency changes at thou-
sands of loci rather than strong selective sweeps, consistent with a 
highly polygenic response. Third, we show this polygenic response 
operates in many cases through regulatory changes, as evidenced by 
the enrichment of selected SNPs near differentially expressed genes.

 Recent advances in genomic technologies have revealed the exten-
sive genetic complexity underlying quantitative traits. Large-scale 
genome-wide association studies ( 34 ,  35 ), experimental evolution 

Fig. 6.   Signatures of epistasis in experimental data and simulations. (A) Top panel shows negative log10 P- values (y- axis) from the regression analysis of allele 
frequency over time. The P- values correspond to the time- by- selection regime interaction coefficient in the model. SNP positions are scaled for visualization. 
Bottom panel shows a heatmap of pairwise SNP analyses performed in the populations exposed to the high- sugar selection regime. Negative log10 P- values of 
the gametic disequilibrium, given by a chi- square test, are shown above the diagonal. Negative log10 transformed P- values of the correlation in allele frequencies 
over time are shown below the diagonal. (B) Locus pairs showing both genotype ratio distortions (chi- square test, P < 5.7 × 10−8) and correlated allele frequencies 
(r, P < 0.001). The outer circle represents the chromosome arms, and each link represents a locus pair. Colors correspond to our LD clumping procedure, where 
links with the same color involve the same locus at one end, supported by multiple locally linked SNPs. (C) Comparison of allele frequency correlations and 
gametic disequilibrium in the simulations, across additive, and epistatic scenarios.
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studies ( 3 ), and gene-regulatory network analyses ( 36 ) consistently 
show that adaptation involves changes at many loci. This empirical 
evidence aligns with theoretical predictions about polygenic adap-
tation—particularly that mutational target size determines the 
number of loci involved in adaptive response ( 37 ,  31 ). Our results 
support Höllinger’s intermediate scenario, where adaptation pro-
ceeds through partial sweeps at many loci rather than classic selective 
sweeps. The broad genomic response mirrors the known physiolog-
ical complexity of dietary adaptation in Drosophila , where high-sugar 
environments affect multiple traits including metabolism, feeding 
behavior, and lifespan. While we do not have access to the pheno-
types under selection, we are able to probe these putative differences 
by analyzing differential gene expression. Selected lines show hun-
dreds of DE genes, and these are indeed enriched for selected SNPs, 
suggestive of a link between regulatory cis -eQTL variation and the 
response to selection. These widespread regulatory changes are 
expected to percolate through metabolic networks ( 38 ), leading to 
interactions between connected genes, which potentially compli-
cates the adaptive architecture ( 38 ).

 We attempt to further characterize the adaptive architecture by 
searching for possible signatures of epistatic interactions between 
the SNPs under selection in the hs  populations. While epistasis 
can store additive genetic variation ( 39 ,  40 ), its effect on long-term 
selection response is generally considered modest ( 27 ). However, 
epistasis becomes important when it is directional—where 
epistatic effects consistently enhance or buffer additive variation 
( 41   – 43 ). Although measuring epistasis is challenging, making 
general patterns of directional epistasis difficult to document ( 9 ), 
it has been observed in several model organisms ( 44 ,  45 ). When 
multiple traits are selected simultaneously, epistatic effects on trait 
associations can significantly influence selection response ( 46   – 48 ).

 Recent E&R experiments highlight two ways epistasis shapes 
adaptation. First, through allelic redundancy, where different com-
binations of alleles at multiple loci can produce similar fitness 
effects, leading to variable responses across replicates ( 3 ). Under 
stabilizing selection, such interactions necessarily create fitness 
epistasis ( 31 ,  49 ). Second, epistatic interactions can increase par-
allel evolution by constraining adaptive paths through genotype 
space ( 16 ,  30 ,  49 ). Given these mechanisms, we examined our 
high-sugar populations for epistatic signatures, specifically looking 
for correlated allele frequencies and gametic disequilibrium 
between unlinked loci. While we cannot determine the precise 
mechanisms underlying these epistatic interactions, their consist-
ent signature across replicates provides strong evidence for epistasis 
contributing to adaptation to high-sugar stress.

 Our findings highlight the power of E&R experiments to dis-
sect complex adaptive responses that would be difficult to detect 
through other approaches. The combination of replicated evolu-
tion, temporal sampling, and multiple genomic analyses revealed 
not only the extensive nature of polygenic adaptation but also 
underscored the significance of epistasis in shaping evolutionary 
trajectories. This experimental framework enables fine-scale reso-
lution into how organisms adapt to environmental challenges by 
allowing us to track the concurrent evolution of thousands of loci 
and their interactions.  

Methods

Mapping Population. To allow the detection of allelic effects that would be hid-
den in natural populations due to low frequency, we created a synthetic outbred 
mapping population. To create this population, we selected 16 inbred lines from 
the Netherlands population (NEX) from the Global Diversity Lines (50). The 
lines were selected based upon their low frequency of inversions to reduce the 
suppression of recombination associated with inversions (3). To establish the 

population from these lines, we performed a round- robin cross on the initial 
lines (1 × 2, 2 × 3, …, 16 × 1) and subsequently performed a round- robin cross 
on the F1s to ensure parental representation and that no chromosome was lost. 
The resulting F2 individuals were placed in 42 h × 42w × 42d cm cages and 
allowed to recombine freely for more than 50 generations. This design increases 
the allele frequency of rare variants by replicating and randomizing throughout 
the population (Fig. 1C).

Selection Regime. We performed a laboratory natural selection experiment 
(51) on high- sugar diets without selecting for any phenotype. High- sugar diets 
are known to have high fitness costs (23)and by allowing our populations to 
directly evolve under this physiological stress, we explored the adaptation to 
this deleterious effect. To do this, we subdivided our mapping population into 
6 replicate populations, 3 of which were placed on a standard medium and 3 
of which were placed on high- sugar medium. The standard medium consists of 
8% glucose, 8% yeast, 1.2% agar, 0.04% phosphoric acid, and 0.4% propionic 
acid. High- sugar medium follows the same recipe as standard medium with the 
addition of 12% glucose resulting in a total of 20% glucose. Each population 
was placed in a population cage (BugDorm #4F3030) and maintained at ~5,000 
individuals for ~120 generations. Each generation was seeded from an egg lay, 
on fresh bottles of the respective diet, at 5 to 6 d posteclosion. After pupation 
but before eclosion, bottles were cleared of adults, moved to new cages and 
opened. Following each egg lay, individuals were collected and stored at −80 C 
for subsequent sequencing.

Factorial Egg Lay After Selection. To assess whether selected populations had 
adapted to the stressful high- sugar environment, we performed a factorial egg 
lay experiment, measuring the fecundity of both control and hs populations 
in the control and high- sugar diet. Both populations show higher fitness in the 
diet to which they had adapted (Fig. 1D).

Library Preparation and Sequencing. Flies from generation 1, 11, 25, and 
100 were selected from each population for sequencing and distributed into 
96- well plates. One 2.8 mm stainless steel grinding bead (OPS diagnostics, 
#089- 5000- 11) and 100 µL of lysis buffer were added to each well. Flies were 
homogenized for 10 min at maximum speed in a Talboys High Throughput 
Homogenizer (#930145). The resulting lysate was moved to a new 96- well 
plate for DNA extraction, using a Multi- Well Plate Vacuum Manifold (Pall Life 
Sciences #5017) and Acroprep advance 1 mL DNA binding plates (Pall Life 
Sciences #8132).

Library prep was performed using a liquid handling robot (CyBio® FeliX, Analitik 
Jena) to ease the processing of many samples and reduce variability from manual 
handling of samples. The protocol broadly followed the strategy described by Picelli 
et al (52). Specifically, we added 10 µL (100 µM) of forward oligo adapter A and 
10 µl (100 µM) of reverse oligo adapter (Tn5MERev) to 80 µL of reassociation 
buffer (10 mM Tris pH 8.0, 50 mM NaCl, 1 mM EDTA). Following this, we annealed 
in a thermocycler with the following program: 95 °C for 10 min, 90 °C for 1 min, 
reduce the temperature by 1 °C per cycle for 60 cycles, and then hold at 4 °C. The 
process was repeated for oligo adapter B. To load the adapters onto Tn5, we mixed 
5 µL of Tn5, 9 µL of preannealed adapter A, and 9 µL of preannealed adapter B 
then incubated this mixture in a thermocycler at 37 °C for 30 min. The resulting 
precharged Tn5 was then diluted with a 1:1 solution of reassociation buffer and 
glycerol to 1:1 reassociation buffer:glycerol to precharged Tn5.

Mapping of Reads, SNP Calling, and Estimation of Allele Frequencies. 
Following sequencing, we mapped reads to the D. melanogaster reference 
genome (v6.14) using BWA (3) 53, retained only uniquely mapped reads, and 
removed PCR generated duplicates using Picard (“Picard Toolkit,” 2019). SNPs 
were called jointly in batch 1 (generations 1,11,25; 1728 samples) and batch 
2 (generation 100; 1,116 samples) using the haplotype- based variant detector 
Freebayes (54), ignoring indels and multiallelic SNPs. Any SNPs with a quality 
score less than 30, or with a coverage smaller than 28× in any population in 
batch 1, or smaller than 80× in any population in batch 2, were excluded. We 
also excluded SNPs with coverage above the genome wide baseline of 167× in 
any population in batch 1, or above 333× in any population in batch 2, since 
such highly covered SNPs might be indicative of collapsed repeats. After these 
filtering steps, we retained 1,741,428 SNPs on the major chromosomes (2L, 2R, 
3L, 3R, and X) for subsequent analyses.D
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Allele frequencies inferred from pooled sequencing can be biased if the cover-
age per individual in the pool is uneven. Our individually barcoded DNA- libraries 
allowed us to identify from which individual any given read originates, thereby 
avoiding this problem. The variance in per sample read depth was substantial, 
suggesting that allele frequency estimated from Pool- seq, agnostic to read origin, 
might be error prone. We corrected for uneven coverage when estimating allele 
frequencies using the formula: fik =

1

nk

∑

j

�

AOij∕
�

AOij+ROij

��

  , where fik  is the 

estimated allele frequency of SNP i in pool k, n is the number of individuals in 
the pool, and AOij  and ROij  are the number of observations of the alternative and 
reference alleles respectively at SNP i in individual j. The sum is taken over all 
individuals in pool k, where k is one of the 24 [4 (timepoints) × 3 (replicate pop-
ulations) × 2 (treatments)] population samples. This strategy corrects for unequal 
coverage and should be referred over naive Pool- seq estimates. We thus obtained 
estimates of allele frequency per SNP, in each of the 24 population samples.

We minimized variability in sequence coverage introduced by manual han-
dling of samples by preparing libraries with a CyBio® FeliX liquid handling 
robot. We pooled libraries according to DNA concentration, and repooled the 
DNA libraries after preliminary sequencing on the Illumina Miseq platform to 
normalize coverage.

Inference of Patterns of Polygenic Adaptation Using PCA. To explore 
the main drivers of genetic changes during the course of the experiment, we 
performed a PCA of the genome wide allele frequencies. For this analysis, we 
first assembled a sample- by- SNP matrix P, containing the genome- wide allele 
frequencies in all 24 population samples (4 time points × 2 treatments × 3 
replicate populations). We then computed the PCs of this matrix allowing us to 
identify the main drivers of allele frequency changes in an unsupervised fashion.

Inference of Individual Loci Selection Signatures. To detect signals of positive 
selection, we fitted the following logistic regression model:

log

(

pi
1−pi

)

= � t ti + �HSHSi + �HS∗t tiHSi + ei ,

where pi denotes the allele frequency at a given locus in a given population and 
time point; ti is a numerical variable corresponding to the 4 sampled time- 
points (generations 1, 11, 25, and 100 are numerically coded as {1, 2, 3, 4}, 
and so the corresponding coefficient ( � t ) measures the average allele frequency 
change across all time- points); HSi is an indicator variable corresponding to 
the two treatments HS = 1 in high- sugar (hs) and HS = 0 in control (con-
trol); ei is an error term. The � parameters are the corresponding regression 
coefficients. This allowed us to model the allele frequency for every locus across 
the entire selection experiment in one joint statistical framework. We focus 
primarily on the interaction effect �HS∗t , which quantifies the degree to which 
the allele frequency trajectory in the control regime differs from the one on 
the high- sugar regime.

After fitting this model for all SNPs (as described above), we obtained estimates 
of the effect of time separately for the control and high- sugar selection regimes. 
This was done using the emtrends function in the R package emmeans (55). 
In order to exclude selection signatures that did not correspond to high- sugar 
adaptation, we disregarded SNPs where the effect of time on the high- sugar 
selection regime showed a P- value above 10−4.

Individual Level Genotypes. To obtain individual- level genotypes rather 
than allele frequencies from our low coverage data at generation 100, we 
first filtered our SNP data more stringently. Having already applied the filter 
described above, we retained SNPs with called genotypes in more than 90% of 
the individuals, each genotype being called with a minimum depth of 3. We also 
excluded individuals with more than 50% missing genotypes. This filtering was 
done separately for each chromosome, giving a set of 51 k SNPs called in 412 
individuals in the control populations, and 52 k SNPs called in 439 individuals 
on the high- sugar populations. These genotypes were used to estimate linkage 
disequilibrium (Fig. 1B) and to search for signatures of selective sweeps and 
gametic disequilibrium.

Detecting Selective Sweeps. To detect signatures of selective sweeps, we first 
used the software shapeit (55) to phase the individual genotypes into haplotypes. 
The estimated haplotypes were then used to calculate the iHS (28). Briefly, iHS 

measures the length of haplotype homozygosity around a given allele, compared 
to its alternative allele. A recent selective sweep is expected to leave a genomic 
footprint of extended homozygosity around the selected allele, whereas selection 
on standing genetic variation and/or polygenic selection might not leave such 
a footprint (56). iHS was calculated using the R- package rehh (57), and scores 
were standardized per allele frequency bin as described by Voight et al. (28). We 
calculated iHS at generation 100 on the high- sugar selected populations, using 
the 3 replicate populations. To compare selection signatures inferred from our 
regression model to selective sweeps inferred by iHS, we contrasted the regres-
sion P- values to iHS on a SNP- by- SNP basis (SI Appendix, Fig. S4).

Transcriptional Changes Associated with Adaptation to High- Sugar Diet.
Experimental design. To identify transcriptional changes associated with genetic 
adaptation to high- sugar, we performed an experiment that allowed us to robustly 
differentiate gene expression differences due to the adaptation regime from the 
plastic response due to short- term changes in dietary condition. For this, we used 
a full reciprocal design where flies from each replicate cage from generation 170 
were allowed to lay eggs in either the dietary condition they evolved in (i.e., hs 
evolved flies on high- sugar food, control evolved flies on control food), or in 
the alternative diet (i.e., hs evolved flies on control diet, control evolved flies 
on high- sugar diet). Female flies were collected 7 to 11 d after eclosion, and head 
and body were separated and plated each in two 96- well plates with each plate 
containing samples for only one tissue and all four experimental combinations. 
Plates were stored at −80˚C until further processing.
RNA extraction and sequencing. Plates containing heads and bodies were pro-
cessed in the same way: Sample homogenization was done as described above 
for DNA samples, and mRNA extraction as described in Suppl. File 2 of (58) using 
Dynabeads™ mRNA DIRECT™ Purification kit (ThermoFisher), and a final elution 
of 10 µL and 30 µL Tris- HCl for heads and body, respectively. 3′- enriched RNAseq 
libraries were prepared following the TM3′seq pipeline (58). In brief, 10 µL of input 
mRNA was used in the first strand cDNA synthesis reaction which was primed with 
Tn5Me- B- 30 T oligo that binds to the polyA tail of mRNA molecules resulting in 
3′ enriched libraries. cDNA was amplified in three rounds of PCR and tagmented 
using homemade Tn5 transposase. 12 PCR cycles were used for final library ampli-
fication using Illumina’s i5 and i7 primers. The step by step TM3′ seq protocol can 
be found in Suppl. File 1 of (58). All libraries within a plate were pooled using 5 
µL or 2 µL per head and body library, respectively, and cleaned and size- selected 
using the double- sided Agencourt AMPure XP bead (Beckman Coulter) cleanup 
approach described for DNA- seq libraries. The resulting four plate- level libraries 
were pooled in equal proportions and sequenced on the Illumina NovaSeq S2 
platform at the Genomics Core Facility of the Lewis- Sigler Institute for Integrative 
Genomics at Princeton University. RNA extraction, cDNA synthesis, and library 
preparation were done in the CyBio® FeliX liquid handling robot.
Processing of RNAseq data. Raw RNA- seq reads were trimmed to remove 
low quality bases, adapter sequences, and to exclude posttrimmed reads 
shorter than 20 nt using Trimmomatic 0.32 (59) and the following parame-
ters: SE ILLUMINACLIP:1:30:7 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 
MINLEN:20. The trimmed reads were mapped to the D. melanogaster genome 
r6.14 using STAR (60), and uniquely mapped reads were assigned to genes using 
feautureCounts from the package Subread (61) and the following parameters: 
- t exon –g gene_id]. Samples with fewer than 500 k or more than 20 M gene 
counts, and genes with mean CPM < 1 were removed. After this filtering, the final 
dataset used in further analysis consisted of 161 head samples with a median of 
3.45 M gene counts covering 8,460 genes, and 171 body samples with a median 
of 2.3 M gene counts covering 8,360 genes.
Differential expression analysis. To identify the transcriptional differences 
due to adaptation to high- sugar, we performed a differential expression anal-
ysis between flies evolved in hs diet and flies evolved in control diet while 
accounting for the dietary condition the flies were exposed to for one gener-
ation. For each tissue separately, we used a Wald test in DESeq2 (62) and the 
following design: Expression ~ Plate + Diet + Genotype, where Plate indicates 
the 96- well plate in which samples were processed from sample collection 
through library preparation; Diet represents the dietary condition the flies were 
exposed to for one generation (hs or control); Genotype represents the diet 
flies evolved in (hs or control). Sample size for each of the four groups in 
body and head, respectively: n(genotype hs, diet hs) = 41, 38; n(genotype hs, 
diet control) = 46, 42; n(genotype control, diet control) = 45, 41; D
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n(genotype control, diet hs) = 39, 40. P- values were estimated for the null 
hypothesis lfcThreshold = 0 and alpha = 0.05, and adjusted using Benjamini & 
Hochberg FDR method.
Differentially expressed genes and selection. To investigate the relationship 
between transcriptional and genomic responses to selection, we analyzed the 
spatial association between differentially expressed (DE) genes and genomic 
regions showing signatures of selection. Using the R- package GenomicRanges, 
we identified SNPs within ±5 kb of DE genes that showed significant time- by- 
selection interactions in our regression analysis. We assessed this overlap across 
multiple stringency thresholds, using P- values ranging from 10−5 to 10−3 for the 
time- by- regime effect (Fig. 5B, red lines and points).

Given the large number of both DE genes and selected SNPs in our data-
set, we expected some overlap to occur by chance. To quantify this background 
expectation, we implemented a permutation testing approach. For each P- value 
threshold, we randomly sampled genome windows of the same size as our DE 
genes. We then calculated the fraction selected SNPs that fell within the ±5 
kb around these randomly selected windows. We repeated this process 1,000 
times for each P- value threshold to generate empirical null distributions for the 
expected overlap (Fig. 5B, boxplots). This approach allowed us to assess whether 
the observed spatial association between DE genes and selected SNPs exceeded 
what would be expected by chance alone.

Epistatic Selection Signatures.
Wright–fisher model with selection for epistatic QTLs. We used an individual 
based Wright–Fisher model to investigate the effect of epistatic interactions in the 
interchromosomal LD in our selection experiment. The simulation was based on the 
code from (63), using the SLiM modeling framework. We start by creating a neutral 
burn- in population with 5000 individuals, two equal chromosomes with 300 k sites, 
a base mutation rate of 1.5 × 10−9, and a between- site recombination rate of 10−8. 
This burn- in population is allowed to evolve under a Wright–Fisher neutral model 
for 50 k generations. With these parameters we expect about 0.5 recombinations 
per generation, and after 50 k generations we have about 3 k segregating neutral 
SNPs in mutation- drift equilibrium with a minor allele frequency above 5%. The 
burn- in process was repeated for each simulation replicate, so each replicate sim-
ulation started with a different initial population. For each initial population, we 
also did experimental replicates, which started from the same starting population.

Using these starting populations, we sampled 1,000 of the segregating muta-
tions to be QTLs contributing to the phenotypic effect of a polygenic trait, with 
all QTLs having the same phenotypic effect and 2 alleles. We then considered 
two scenarios: 1) an additive scenario, where the value of the trait is only given 
by these additive QTLs, and 2) an epistatic scenario, where, in addition to the 
additive effects, we sampled 200 pairs of QTLs (one member of the pair in each 
chromosome) to have an additive- by- additive epistatic effect. In this epistatic 
scenario, the value of the trait depended on these epistatic interactions. Both 
scenarios proceed with truncation selection on the polygenic trait for 100 genera-
tions, with the 500 individuals with the smallest trait value being removed before 
reproduction in each generation. This strength of selection was chosen so that 
at the end of the simulation we had only a few fixations (around 10), mimicking 
the observation in our fly selection experiment.

During the selection phase of the simulation we sampled allele frequencies at 
regular intervals (every 10 generations) and used these to calculate the correlation 
between allele frequencies at the QTL pairs. At generation 100, we also measured 
the gametic disequilibrium between the same pairs of QTLs in both simulations, 
with the only difference being the presence of the epistatic interaction in one of 
the scenarios. We compared the mean gametic disequilibrium between these 
QTL pairs to a distribution of the mean gametic disequilibrium between random 
pairs of SNPs across chromosomes. To create this distribution, we sampled 200 
SNPs in each chromosome and calculated the gametic disequilibrium between 
the pairs, this process was repeated 10 k times. We created a separate distribution 
for each scenario.

Identifying well- supported epistatic SNP pairs. To detect potential instances 
of epistatic selection, we looked for two types of signals: 1) correlations between 
the allele frequencies at different loci; 2) gametic disequilibrium after 100 gen-
erations of selection. The former could be due to epistasis or due to similar but 
independent selection coefficients at the respective loci, while the latter is only 
expected under epistasis. The correlations were estimated by the Pearson corre-
lation coefficient, using allele frequencies in all generations on the high- sugar 
populations ( n = 12 per SNP pair). The gametic disequilibrium was quantified 
separately in high- sugar and control populations, using the individual genotypes 
at generation 100 described above. For each SNP pair, we tested the deviation 
from independent segregation using a chi square test ( n ~ 420 per SNP pair). 
Having identified candidate pairs where the two SNPs displayed gametic dise-
quilibrium and were located on different chromosomes, we attempted to find 
well supported signals by clustering physically close SNPs with a similar signal 
of gametic disequilibrium. To do this, we applied a clustering procedure akin to 
the LD clumping algorithm implemented in PLINK (64). The algorithm works 
as follows:

i)   Starting with the SNP pair with the smallest P- value for gametic disequilibrium, 
assign to the same cluster all other SNP pairs with one SNP on chromosome 2 
that are within 250 kb, in linkage disequilibrium, and have not already been clus-
tered. Repeat until there are no more SNP- pairs to assign to clusters. Thus, each 
cluster contains SNP pairs sharing proximal and linked SNPs on chromosome 2.

ii)  For each cluster identified in i), perform a second round of clustering for the 
SNP pairs within that cluster. This is done by assigning to the same cluster all 
SNP- pairs with one SNP on chromosome 3 that are within 250 kb, in linkage 
disequilibrium, and have not already been clustered.

We thus obtain hierarchical clusters, where each “chromosome 2 end” cluster 
contains one or several “chromosome 3 end” clusters. The algorithm is greedy, so 
each SNP pair will only end up in one cluster, if at all. Finally, we keep the clusters 
with at least three linked SNPs at “each end”. We thus identify epistatic selection 
signatures supported by multiple SNP pairs, with multiple linked SNPs at each 
end of the putative interaction. Through the nature of our clustering procedure, 
each such signature will involve one locus on chromosome 2, and one or several 
loci on chromosome 3 (Fig. 6B).

Data, Materials, and Software Availability. Genomic Sequences data is 
deposited in SRA under PRJNA1271221 (65). Code to reproduce figures in this 
paper is available at https://doi.org/10.5281/zenodo.15390444 (66).
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