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Abstract
Validating associations betweengenotypic andphenotypic variation remains a challenge, despite advance-

ments in association studies. Commonapproaches for signal validation rely on gene-level perturbations, such
as loss-of-function mutations or RNAi, which test the effect of genetic modifications usually not observed in
nature. CRISPR-based methods can validate associations at the SNP level, but have significant drawbacks, in-
cluding resulting off-target effects and being both time-consuming and expensive. Both approaches usually
modify the genome of a single genetic background, limiting the generalizability of experiments. To address
these challenges, we present a simple, low-cost experimental scheme for validating genetic associations at the
SNP level in outbred populations. The approach involves genotyping live outbred individuals at a focal SNP,
crossing homozygous individuals with the same genotype at that locus, and contrasting phenotypes across
resulting synthetic outbred populations. We tested this method in Drosophila melanogaster, measuring the
longevity effects of a polymorphism at a naturally-segregating cis-eQTL for the midway gene. Our results
demonstrate the utility of this method in SNP-level validation of naturally occurring genetic variation regu-
lating complex traits. Thismethod provides a bridge between the statistical discovery of genotype-phenotype
associations and their validation in the natural context of heterogeneous genomic contexts.

Introduction

Understanding how genetic variation regulates phenotypic differences between individuals is one of themain1

challenges ofmodernbiology. Advances ingeneticmappingmethods, suchasGWAS,have identified thousands2

of genetic variants associatedwith variation in complex traits across awide range of organisms (Alsheikh et al.,3

2022; Pallares et al., 2023; Saul et al., 2019; Visscher et al., 2017). Although mapping studies have contributed4

substantially to elucidating the genetic architecture of complex traits, the validation of candidate variants has5

dramatically lagged behind (Gallagher & Chen-Plotkin, 2018) and remains particularly difficult.6

Methods for validating genetic association signals fall under two broad categories, methods that operate at7

the gene level and those that operate at the polymorphism level. Currently, the most common approaches to8

validate candidate genotype-phenotype associations rely on gene level experimental perturbation using loss-9

of-functionmutations or RNAi constructs, comparing organismswith andwithout a functional copy of a gene10

of interest and assessing the phenotypic consequences (Bellen et al., 2019; Housden et al., 2017; Zimmer et al.,11
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2019). Despite their immense usefulness in defining gene function, these approaches have important limita-12

tionswhenvalidating genotype-phenotype associations givenhowdisconnected the validation context is from13

the association study that generated the signal of interest. In addition, the genetic effects assessed with such14

approaches usually represent genetic variation (e.g., null KO alleles) that does not segregate in natural popu-15

lations. Recent developments in CRISPR technology provide an alternative that has revolutionized the field.16

They have allowed for more realistic experiments in which specific single nucleotides can be targeted and re-17

placed to assess the phenotypic effects of alternative variants (Hoedjes et al., 2023; Ramaekers et al., 2019).18

These CRISPR-based validationmethods still presentmajor drawbacks. First, off-target effects can be substan-19

tial and difficult to assess (Lessard et al., 2017; Schaefer et al., 2017). Secondly, CRISPR assays can be costly,20

time-consuming, and not readily available depending on the target organism. Critically, both loss-of-function21

and CRISPR-based studies usually modify the genome of a single genetic background, often using inbred lines22

(Mokashi et al., 2021). We argue that, given that genetic effects are often background-dependent (Chandler et23

al., 2013), working on a single genetic background limits the inference and generalizability of the validation24

results.25

Figure 1: Experimental approach used to create populations with diverse genetic backgrounds fixed at a
focal SNP. Virgin flies from both sexes are collected from an outbred fly population harboring the polymor-
phisms of interest. While anesthetized with CO2, a single leg is removed from each virgin fly, and individuals
are placed into separate vials waiting for the legs to be genotyped. DNA is extracted from each leg and geno-
typed individually at the focal SNP using PCR and amplicon sequencing. Oncemales and females homozygous
for the same genotype are identified, they are crossed (within genotype) and an equal number of offspring
from each cross are transferred to a bottle to ensure that the genomic background of each founder individual
is represented in the resulting population. In each bottle, all individuals are fixed for a given genotype at the
locus of interest and the populations maintain genetic diversity present in the initial outbred population. The
resulting populations are ready to be phenotyped for any trait of interest.

To address these challenges, we propose a simple, low-cost experimental scheme for the validation of genetic26
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association at the polymorphism level in outbred populations, thus preserving variation in the genetic back-27

ground across individual. The approach relies on three steps: 1) genotyping live outbred individuals at a focal28

SNP, 2) crossing homozygous individuals that share the same genotype at the locus of interest, and maintain-29

ing them as outbred populations, and 3)measuring and comparing phenotypes of interest across the resulting30

synthetic outbred populations that are fixed for the polymorphism of interest but have randomized genetic31

backgrounds (fig. 1).32

We demonstrate the utility of this approach in Drosophila melanogaster focusing on the phenotypic effects of33

a cis-regulatory polymorphism for midway. The midway gene is known in Drosophila to be involved in lipid34

metabolism (Buszczak et al., 2002; Girard et al., 2021; Tian et al., 2011), immune function (Tschapalda et35

al., 2016), and female fertility (Schüpbach & Wieschaus, 1991). And, it was recently identified as a lifespan-36

regulating gene in a study investigating the genetic basis for variation in lifespan inD.melanogaster (Pallares et37

al., 2023). Furthermore, themammalian ortholog ofmidway,DGAT1, has previously been linkedwith longevity38

in mice (Streeper et al., 2012). Pallares et al. (unpublished) identified that midway plays a role in regulating39

lifespan using a loss-of-function mutation in an inbred line, we do not know if or how naturally-segregating40

genetic variants linked to midway expression are indeed responsible for lifespan variation in this species.41

Simultaneously, another study aimed at mapping genetic variants that regulate variation in gene expression42

levels genome-wide (i.e. eQTLs) in an outbred fly population, identified a candidate cis-eQTL upstream of43

midway (Pallares et al., unpublished). We used the validation paradigm outlined above to determine whether44

this regulatory variant identified formidway contributes to variation in lifespan.45

To accomplish this, we created two fly populations, each homozygous for one of the eQTL focal alleles (i.e. AA46

vs GG) and, for each, quantified variation in longevity. We were able to validate the role this specific eQTL47

variant plays in lifespan and indirectly confirm that transcriptional variation in midway drives its effect on48

lifespan. Our experimental approach allowed us to validate a statistical discovery across a randomized set of49

genetic backgrounds in an outbred population. This study is one of the few validations of naturally occurring50

genetic variation controlling complex traits at the single nucleotide level.51

Methods and Results52

Drosophilamelanogaster outbred populations53

ThecandidateSNP for thegenemidwayweare investigatingwas identified in aneQTLmapping study thatused54

an outbredmapping population of D.melanogaster derived from theNetherlands (NEX fromnowon) (Pallares55

et al., unpublished). This population was generated by crossing 15 inbred Global Diversity Lines (Grenier et56

al., 2015), followed by ~130 generations of recombination. The identification and initial validation of midway57
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as a regulator of Drosophila lifespanwas recently published as part of a GWAS-like study that used an outbred58

population derived from 600 isofemale lines caught in Princeton, NJ (Pallares et al., 2023). To validate the59

effect of themidway eQTLon longevity,weused the sameoutbredNEXpopulationwhere the eQTLwas initially60

discovered. Flies were maintained at 25°C, 65% relative humidity, and a 12h:12h light:dark cycle, and were fed61

mediawith the following composition: 1% agar, 8.3% glucose, 8.3% yeast, 0.41% phosphoric acid (7%), and 0.41%62

propionic acid (83.6%).63

Experimental populations used for SNP validation64

To evaluate the effect of the target SNP on longevity, we followed the scheme described in fig. 1 and created two65

synthetic outbred populationswith hundreds of individuals homozygous for eachmidway cis-eQTL allele (AA66

orGG) identified in (Pallares et al., unpublished). Thecandidate SNPeQTL formidway is located at 2L:16,812,90167

(3759 bp upstream of themidway gene) and has aminor allele frequency of 16% in the NEX population where it68

was discovered (Pallares et al., unpublished).69

We randomly selected virgin male and female flies from the outbred NEX population to identify flies70

homozygous at the focal locus. While the flies were anesthetized with CO2, we removed one leg from71

each individual for DNA extraction and genotyping (removing a leg does not alter viability). The flies72

were kept in separate vials until their genotypes were determined, after which they were paired with73

flies of the same genotype and mated. DNA was isolated with the QuickExtract™ DNA Extraction (cat74

no. QE09050) and the region around the focal midway polymorphism was amplified using the follow-75

ing primers: Fwd-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAGGAGCCACCAAGTGTTGT and Rev-76

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATCGAACTTCTCTCGCGACT. The sequencing library for77

these amplicons was generated using Illumina i5 and i7 primers. After bead cleaning, the library was se-78

quenced using a MiSeq Nano flow cell (150bp PE reads) at the Genomics Core Facility of Princeton University.79

Genotypes were called using bcftools mpileup (Li, 2011) with parameters -Ou -B -q 60 -Q 28 -d 1000 -T -b files |80

bcftools call -Ou -m -o. After identifying the homozygous individuals for the two alleles, five crosses were set81

up in vials, eachwith onemale and one female of the same genotype. From each cross of the same genotype, 1082

male and 10 female offspring were combined in a bottle and allowed to mate freely for two generations before83

starting the survival assay. This design ensures that the genotype of each founding parent is represented in84

the synthetic outbred population (see fig. 1).85

Toassesswhether this candidatemidwayvariant is associatedwithvariation in lifespan,weperformedsurvival86

assays in both experimental populations (i.e. one for each alternative genotype). One hundred males and one87

hundred females (1-2 days old) for each homozygous midway cis-eQTL genotype were distributed across 1088

vials with 10 individuals of each sex in each vial. Flies were transferred onto fresh media every 3 days, and89
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survival was monitored each time flies were transferred until the last fly died on day 79 (fig. 2).90

Weperformedaproportionalhazardregressionusing theempirical survivaldistributionusing the statsmodels91

Python package (Cox, 1972; Seabold & Perktold, 2010). Given that male and female D. melanogaster differ in92

average lifespan (Austad & Fischer, 2016), we were interested in whether the focal genotype modulated this93

difference. Therefore, our model was initially specified as:94

𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛𝑖 ∼ 𝛽0 + 𝛽1𝛿𝑀𝑎𝑙𝑒
𝑖 + 𝛽2𝛿𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 𝐴𝐴

𝑖 + 𝛽3𝛿𝑀𝑎𝑙𝑒
𝑖 𝛿𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 𝐴𝐴

𝑖 + 𝜖𝑖

Wedid not find significant genotype-by-sex effects (95% CI 0.6635 - 1.4597; p = 0.9365). We then proceededwith95

the following model:96

𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛𝑖 ∼ 𝛽0 + 𝛽1𝛿𝑀𝑎𝑙𝑒
𝑖 + 𝛽2𝛿𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 𝐴𝐴

𝑖 + 𝜖𝑖

Our results show that after accounting for sex, flies homozygous for the minor GG genotype live longer than97

flies homozygotes for themajor allele AAgenotype. Cox’s proportional hazard regression using the finalmodel98

yields a hazard ratio for genotype AA of 0.6767 (95% CI 0.5544 - 0.8261; p = 0.0001).99

Figure 2: Effect of themidway regulatory polymorphismonD.melanogaster survival. Survival distribution
stratified across midway genotype. Shaded regions show standard error, and the dashed vertical lines show
mean lifespan by genotype (AAmean lifespan 40.99 days, GGmean lifespan 44.33 days). T50, the last daywhen
50% of individuals are alive, is denoted by wedges along the x-axis. T50 is day 42 for genotype AA and day 45
for genotype GG. Survival data for 200 individuals from each midway cis-eQTL genotype is included.
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Discussion100

The fast-growing power ofmapping studies has produced an ever-expanding list of candidate genetic variants101

associated with complex trait variation. This large number of candidates with small effect sizes presents a102

formidable challenge for validating these signals, especially if the effects are context-dependent. To overcome103

some of these challenges, we developed an alternative experimental approach for candidate SNP validation104

that does not rely on genetic engineering (e.g. CRISPR or RNAi). Our approach simply relies on generating105

populations of individuals fixed for alternative genotypes of a target polymorphism but randomized across106

diverse genetic backgrounds. These synthetic outbred populations enable the validation or estimation of ad-107

ditive allelic effects of variants in a natural genetic context. This approach is facilitated by the low cost and108

high throughput of amplicon sequencing using Illumina’s MiSeq sequencer (i.e. hundreds of individuals can109

be genotyped-by-sequencing in a couple of days and at a low cost).110

One of the key benefits of this approach is the gain in statistical power provided by the change in allele fre-111

quency between alternative genotypes in the synthetic outbred populations. While in the initial mapping pop-112

ulation, potentially lowminor allele frequency limits statistical power to detect variation in allelic effects, our113

approach yields a validation population where jointly, the minor allele frequency is 0.5 (e.g. in this study, the114

frequency of the minor allele in the mapping population was 0.16 and effectively rose to 0.5 across our vali-115

dation populations). Thus, this approach maximizes the chance of identifying a phenotypic effect associated116

with a focal SNP of interest.117

An additional benefit of having outbred populations fixed at alternative genotypes is that one can interrogate118

the pleiotropic effects of a given polymorphism by simply phenotyping each population for any number of119

traits and without any additional genotyping costs. For example, one could simultaneously and robustly esti-120

mate the effect of a SNP on gene expression and its effect on higher-order phenotypes such as behavior. This121

method can also be directly extended to assess the effect of candidate SNPs across a variety of environmental122

contexts and treatments, which opens up a wide range of possibilities, such as validating candidate genotype-123

by-environment interactions.124

Here, we have connected two independent discoveries, derived from two genome-wide analyses in different125

populations of outbred D. melanogaster, and show that a cis-regulatory polymorphism associated with expres-126

sion differences modulates lifespan variation in Drosophila. These results show that our experimental de-127

sign allows for the estimation of the phenotypic effects of a single eQTL. The first report of midway’s involve-128

ment in Drosophila lifespanwas recently confirmed using loss-of-functionmutants (Pallares et al., 2023). The129

changes in gene expression levels caused by the cis-eQTL that we validated here, contrasts the drastic changes130

in genome organization caused by complete loss-of-function. While complete loss-of-function mutants for131

midway show a significant decrease in lifespan (T50 = 33 for midway loss-of-function mutant and T50 = 47132
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for control populations) (Pallares et al., 2023), here, we find that the cis-eQTL genotype that reduces midway133

expression actually increases lifespan. The contrast between those results highlights the benefit of validating134

genetic effects in a relevant genetic context: the biological insight obtained from lab-based experiments will135

be a more accurate representation of the effect of genetic variation in natural populations.136

Thebroad applicability, simplicity, and low cost of the experimental approachwe advance in this study offers a137

tractable system for validating allelic effects in diverse backgrounds and provides significant gain in statistical138

power to detect genotype-phenotype associations. While this study focuses on D. melanogaster, the general139

experimental paradigm we outline can be applied broadly to any model (or non-model) systems where focal140

individuals can be kept alivewhile being genotyped, andwhere controlled breeding is an option (e.g. mice can141

be genotyped from a tail clip, fish from a fin clipping, and fecal sample or venipuncture can be used in birds).142

Code and data availability143

All code and data for reproducing the analysis presented here can be found on GitHub: github.com/ayroles-144

lab/SNPvalidation.145
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