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Abstract
Gene expressionvariancehas been linked to organismal function andfitness but remains a commonlyneglected
aspect of molecular research. As a result, we lack a comprehensive understanding of the patterns of transcrip-
tional variance across genes, and how this variance is linked to context-specific gene regulation and gene func-
tion. Here, we use 57 large publicly available RNA-seq data sets to investigate the landscape of gene expression
variance. These studies cover a wide range of tissues and allowed us to assess if there are consistently more or
less variable genes across tissues and data sets and what mechanisms drive these patterns. We show that gene
expression variance is broadly similar across tissues and studies, indicating that the pattern of transcriptional
variance is consistent. Weuse this similarity to createbothglobal andwithin-tissue rankingsofvariation,which
we use to show that function, sequence variation, and gene regulatory signatures contribute to gene expression
variance. Low-variance genes are associated with fundamental cell processes and have lower levels of genetic
polymorphisms, havehigher gene-gene connectivity, and tend to be associatedwith chromatin states associated
with transcription. In contrast, high-variance genes are enriched for genes involved in immune response, envi-
ronmentally responsive genes, immediate early genes, and are associated with higher levels of polymorphisms.
These results show that the pattern of transcriptional variance is not noise. Instead, it is a consistent gene trait
that seems to be functionally constrained in human populations. Furthermore, this commonly neglected aspect
of molecular phenotypic variation harbors important information to understand complex traits and disease.

Author Summary
Gene expression variance, or the variation in the level of gene expression within a population, can have signifi-
cant impacts on physiology, disease, and evolutionary adaptations. While the average level of gene expression is
typically the focus of research, the variation around this average level (i.e., gene expressionvariance) can also be
important for understanding complex traits and disease. Here, we investigate the landscape of transcriptional
variance across tissues, populations, and studies. Using large publicly available RNA-seq data sets, we were
able to identify the general properties associated with high- and low-variance genes, as well as factors driving
variation in variance across genes. Specifically, we uncovered gene expression variance was significantly asso-
ciated with gene length, nucleotide diversity, the degree of connectivity and the presence of non-coding RNA.
Our results suggest that themechanisms responsible formaintaining optimal levels of variation in high- versus
low-variance differ, and that this variability is the result of different patterns of selection.
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Introduction
Molecular phenotypes such as gene expression are powerful tools for understanding physiology, disease, and
evolutionary adaptations. In this context, average trait values are usually the focus of investigation, while vari-
ation around the average is often considered a nuisance and treated as noise [1]. However, gene expression vari-
ance can be directly involved in determining fitness [2,3], can drive phenotypic variation [4], and the genetic
architecture of variance itself can evolve [5]. This suggests that studying gene expression variance as a bona fide5

trait, its genetic architecture, and theevolutionarymechanisms shapingandmaintaininggene-specificpatterns
of variance has the potential to further our understanding of complex traits and disease [6–9].

Variability is ubiquitous in nature and is, alongside its counterpart, robustness, a fundamental feature of most
complex systems. But, at the same time, the degree of variability seems to differ between genes [1] suggesting
that it might be associated with biological function and therefore be shaped by selection. From a mechanis-10

tic perspective, several competing forces act to shape transcriptional variance [5,10], and the outcome of the
interaction between these processes is still poorly understood [11]. For example, we expect the influx of new
mutations to increase the variance, while the selective removal of these polymorphisms, via purifying selec-
tion or selective sweeps, to decrease it [12,13]. From a quantitative trait perspective, stabilizing selection should
decrease variation around an optimal value, and directional selection can lead to a transient increase in vari-15

ance while selected alleles sweep to fixation, followed by a reduction in variance as these alleles become fixed.
Pleiotropic effects are also important, as they allow selection on one trait to influence the variance of other traits
[14,15]. Both indirect effects of directional selection on variance open the possibility that themain driver of gene
expression variance is not direct selection on variance but indirect effects due to selection on trait means [11].
How the interaction of these processes shape gene expression variance is an open question. However, some20

general predictions can be made. If a homogeneous pattern of stabilizing selection is the main driver of gene
expression variance, we would expect transcriptional variance to be consistent regardless of the population,
tissue, or environmental context. If idiosyncratic selection or environmental patterns are more important, we
could observe large differences in gene expression variance across studies.

A key difficulty in addressing these questions is that the constraints on gene expression variance might also be25

dependent on the gene tissue specificity. Mean expression is known to differ across tissues [16], however, to
what extent differential expression (i.e., differences in mean expression level) translate into differences in ex-
pression variance is not clear. Higher mean expression could lead to higher variance, but other processes can
also affect transcriptional variance. For example, if a gene is expressed in more than one tissue and variance
regulation is independent across tissues, stabilizing selection on gene expression could bemore intense depend-30

ing on the role of that gene in a particular tissue, causing a local reduction in variation that leads to differences
in variance across tissues (Fig 1A). These across-tissue differences would not necessarily follow mean expres-
sion. Alternatively, expression variation across tissues could be tightly coupled and, in this example, selection
in one tissue would lead to a reduction in variance across tissues, resulting in a consistent pattern of variation
(Fig 1B). While we lack a clear picture of how tissue-specific gene expression variation is regulated, Alemu et35

al. [17] used microarray data from several human tissues to show that epigenetic markers were linked to gene
expression variation and that these markers were variable across tissues and between high- and low-variance
genes.

To explore the landscape of gene expression variance and the association between transcriptional variance and
biological function, we use 57 publicly available human gene expression data sets spanning a wide range of40

experimental contexts and tissues. By comparing the gene expression variancemeasured across such heteroge-
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Figure 1: Example of how differences in the regulation of transcriptional variance can drive changes in the cor-
relations between gene expression variance measures. In (A), independent regulation causes the reduction in
variation to be restricted to context 1 (context here can refer to different tissues, environments, populations,
studies, etc.). On the right side of panel A, independent regulation results in low correlation across contexts.
In (B), a shared regulatory architecture maintains consistent variance across both conditions, leading to high
similarity in transcriptional variance across contexts. In (C), we see how the similarity seen in panel B can be
leveraged to create an across-context rank of gene expression variance. When transcriptional variance ranks
are highly correlated, the rank of the projection onto the first principal component (PC1) allows us to summa-
rize the across-context pattern of transcriptional variance. Note that genes can have intermediate rank because
they have intermediate expression variance, or because their gene expression variance is not consistent across
conditions. The higher the variance explained by PC1, the more we expect intermediate genes to be consistent.
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neous data sets, we show that the degree of expression variance is indeed consistent across studies and tissues.
Weuse theobserved similarities to create anacross-studygeneexpressionvariance ranking,whichorders genes
from least variable to most variable. We then integrate various genomic-level functional annotations as well as
sequence variation to probe the drivers of this variance ranking. Finally, we explore the link between gene45

expression variance and biological function by leveraging gene ontology and other gene annotations.

Results

Data sets

We use 57 publicly available human gene expression RNA-seq data sets which were derived from the publi-
cations listed in table 1 of the Methods section, and a complete metadata table for each study is available in50

S1 Dataset. We only use data sets that fulfilled the following conditions: samples came from bulk RNA-seq
(and no single cell approaches), data sets were associated with a publication, sample-level metadata was
available, and the post-filtering sample size was greater than 10 (note that we did not include data from
non-baseline/exposure/stimulated datasets). Our focus is on bulk RNA-seq data sets because we are interested
in studying population level variation. In particular, we are interested in variation due to segregating genetic55

variants, which is expected to contribute to the evolution of gene expression, and studies using bulk RNA tend
to have many more genetically variable biological replicates. These data sets span 13 different tissue types and
the post-filtering mean sample size we used for each data set was 390, with a median of 251, and ranged from 12
to 2931 samples. Several data sets were derived from two large consortia: GTEx [16] and TCGA [18], and we note
the origin of the data sets in the figures where appropriate. We refer to data sets and studies interchangeably,60

and so each tissue in GTEx is referred to as a different study. The final list of genes used from each study can be
found in S2 Dataset.

What level of variation are we exploring?

Variance, variation, or variability? There is no consensus in the literature as to when to refer to these different
levels of variation andunderwhat scenario. The type of variation thatwe refer to here as gene expression variance65

or transcriptional variance has also been called gene expression variability or even gene expression noise. Fol-
lowing [19], we suggest that variation and variability should be distinguished, and variation should be used to
refer to the realized differences across some population at any organization scale. For example, a genewill have
high variation if its gene expression differs greatly across individuals (or cells, or conditions, etc.), leading to a
high transcriptional variance (the statisticalmeasure of variation). Wewould then specify atwhich level of vari-70

ationwe areworkingwith: across individuals, across cells, within genotypes, and so on. In contrast, variability
should refer to the potential to generate variation. For example, a given gene might have low realized varia-
tion because all individuals in a population have a similar genotype and environment, which leads to similar
expression levels across individuals. At the same time, this same gene can also have a large mutational target
for its expression level, leading to many potential mutations that would cause its expression level to change,75

and therefore we would consider this gene to have high variability and low variation. It should be clear that
in this manuscript we are interested in population level, across individual, realized variation in gene expres-
sion, measured as gene expression variance. Sincewe are using phenotypic variation, the variancewemeasure
is a combination of the contribution of several sources, spanning genetic (e.g., due to segregating expression
quantitative trait loci (eQTL) or variance QTL (vQTL)) and environmental differences across individuals.80
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Figure 2: Overview of the distribution of transcriptional variance across studies. (A) Heatmap showing the cor-
relation in transcriptional variance across studies (as the Spearman correlation of gene expression standard
deviations). Pairs of studies with more similar patterns of gene expression variance have higher correlations.
Studies are shown in the same order as in Fig S1A. (B) Distribution of the pairwise Spearman correlations be-
tween studies shown in the previous panel. (C) PCoA using the distance between studies derived from the pair-
wise correlations. (D) Density plot of standard deviations after z-normalization. Each distribution is colored
by study. The inset plot shows the distribution of mean-centered standard deviations grouped and colored by
study, without normalization. The corresponding rug plots show the location of the highest-ranking gene in
standard deviation rank (HBB) (right, blue) and lowest (WDR33) (left, red).
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Gene expression variance

For each study, transcriptional variance per gene was measured as the standard deviation (SD) of the distribu-
tion of gene expression values for all individuals in a particular study. Mean and variance are known to be corre-
lated inRNA-seqdata, bothdue to thenature of count data and the expectation thatmorehighly expressed genes
should have more variation. As our focus here is on variance, we control for both of these expected drivers of85

transcriptional variation. To achieve this, SDwas calculated using a unified pipeline that normalized themean-
variance relation in read-count data, controlled for batch effects, and removed outliers (seeMethods for details,
and the calculated values for means and standard deviations are available in S3 Dataset). The observed range
of gene expression SDs across genes is variable but can be normalized so that the distributions are comparable
(Fig 2D).This comparison reveals differences in the range of gene expression SDs that can be due to any number90

of methodological or biological differences between the data sets. We avoid having to deal with these global dif-
ferences in the range of variation by using only the ranking of the genes according to their gene expression SD
in each study. Therefore, patterns of transcriptional variance were compared across studies using Spearman
correlations (ρs) between gene expression SDs. This comparison reveals a broadly similar rank of gene expres-
sion variance as the correlations across studies are mostly positive and high (75% of correlations are between95

0.45 and 0.9, Fig 2A and 2B), indicating that genes that are most variable in one study tend to be most variable
in all studies. A principal coordinate analysis [20] using |1 – ρs| as a between-study distance measure does not
show clearly delineated groups, but GTEx and TCGA studies are clustered among themselves and close together
(Fig 2C). This clustering indicates some effect of study source on the similarity between gene expression SD
across studies, which we explore in detail below.100

To characterizewhat factorsmay explain differences in across-study similarity, we directlymodeled the across-
study correlations using amixed-effect linearmodel designed to account for the non-independence in pairwise
correlation data [21,22]. In this model (see Methods), we use a random effect for individual study ID, a fixed
effect for pairwise tissue congruence (whether a comparison is within the same tissue or different tissue), and
afixedeffect for pairwise study source (whichpair of sources amongGTEx, TCGA, andmiscellaneous is involved105

in a comparison) as predictors of the correlations (see Methods). This model (S1 Fig) shows that comparisons
of studies within GTEx and TCGA have on average higher values of ρs, but also that comparing studies across
GTEx and TCGA also shows amild increase in the average correlation (S1C Fig). Correlations that do not involve
studies from TCGA and GTEx (marked as “Misc.”) are on average lower (S1C Fig). While we do not have a clear
explanation for this pattern, since TCGA and GTEx are independent, this mild effect on the similarities could110

be due to the level of standardization of the data coming from these two large consortia. Tissue type also affects
the degree of similarity in transcriptional variance, with studies using the same tissue being, on average, more
similar (S1B Fig). However, all these pairwise effects are mild, and the largest effects on the correlations are
those associated with individual studies, in particular some specific tissues, i.e., comparisons involving BONE
MARROW (from GTEx) and study SRP057500 (which used platelets) are on average lower (S1A Fig). The only115

negative correlation we observe is between these two studies, which also appear further away in the PCoA plot
in Fig 2C.

Transcriptional variance rank

The strong correlations between transcriptional variance across studies suggest that variance rank is indeed a
property of genes that can be robustly estimated. To estimate this gene-level rank, we devised an across-study120

approach that allowed us to rank individual genes according to their degree of transcriptional variance by av-
eraging the ordering across all studies. We do this by calculating the score of each gene on the first principal
component of the across-study Spearman correlation matrix shown in Fig 2A. This procedure is illustrated in
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Fig 1C. Ordering genes using these scores generates a ranked list of genes, with the most variable genes having
the highest rank. The position in the SD distributions shown in Fig 2D of the most and least variable genes in125

this rank illustrates how the extremes of the rank are indeed some of the least andmost variable genes across all
studies. In addition, to be able to account for any residual effect ofmean expression on the variance, we created
a similar across-study rank for mean expression. To explore tissue-specific divers or transcriptional variation,
we created a set of tissue-specific SD ranks. To that end, we used the same procedure outlined above but using
only studies that were performed on the same tissue. Both tissue-specific and across-study ranks are available130

in S4 Dataset.

Biological function explains gene-level transcriptional variance

As a first step toward explaining the factors that drive variation in variability between transcripts, we focused
on the top 5% most variable and the bottom 5% least variable genes in the across-study ranking (560 genes in
each group). A Gene Ontology (GO) enrichment analysis shows 59 enriched terms in the low-variance genes,135

and 738 enriched terms in the high-variance genes (using a hypergeometric test and a conservative Benjamini-
Hochberg (BH) adjusted p-value threshold of 10-3; see S5 Dataset for a complete listing).

Among the most variable genes, we observe enrichment for biological processes such as immune function, re-
sponse to stimulus, maintenance of homeostasis, and tissue morphogenesis (S2A Fig). Furthermore, we see a
7.7-fold enrichment for genes that encode secreted proteins in themost variable genes, relative to all other genes140

(hypergeometric test, p < 10-3).

Among the least variable genes, we see enrichment for housekeeping functions such as mRNA processing, cell
cycle regulation, methylation, histone modification, translation, transcription, and DNA repair (S2B Fig); ac-
cordingly, we also find a 2.0-fold enrichment in previously characterized human housekeeping genes [23] (hy-
pergeometric test, p < 10-3). The genes exhibiting the lowest variance are also enriched for genes that have been145

previously shown to have a high probability of being loss-of-function intolerant (pLI) [24] (1.2-fold enrichment,
hypergeometric test, p < 10-3). Genes with a high pLI have been shown to be important in housekeeping func-
tions and have higher mean expression values across a broad set of tissues and cell types [24]. The observation
that genes with low variance are enriched for both housekeeping genes and genes with high pLI is consistent
with this previous report; and we further see that the mean expression of genes positively correlates with pLI150

(partial Spearman correlation 𝜌𝑠 = 0.32, p < 10-3), showing the opposite relationship between variance andmean
expression when considering pLI.

In the previous analysis, we explored the relationship between transcriptional variance and function by start-
ing from the extremes of the variance distribution and searching forGOenrichment among these high- and low-
variance genes. We also approach the problem from the opposite direction, starting from the genes associated155

with each GO term and searching for enrichment for high- or low-variance genes among them, as this allows to
probe the link between variation and function across the full variance rank. To this end, we gathered all biolog-
ical process GO terms in level 3 (i.e., terms that are at a distance of 3 from the top of the GO hierarchy). Using
level-3 terms gives us a good balance between number of terms and genes per term. We separated the genes
associated with at least one of these level-3 terms into expression variance deciles, with the first decile having160

the lowest variance. We then counted how many genes in each decile have been associated with each term. If
variance rank is not associatedwith theGO annotations, terms should have an equal proportion of genes in each
decile. Wemeasuredhowfar fromthisuniformallocation each term is bymeasuring theShannonentropyof the
proportionof genes ineachdecile. Higherentropy is associatedwithamoreuniformdistributionof genesacross
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Figure 3: Relationship between skew and entropy of rank decile distributions for each GO term. High entropy
terms, to the right of the plot, are associated with a more egalitarian proportion of genes in each of the SD rank
deciles. The terms on the left of the plot are associatedwithmore genes in some particular decile. The skewness
in the y-axis measures if the high- or low-variance deciles are more represented for a particular term. Terms
on the positive side of the y-axis are associated with low-variance genes, and terms on the negative side of the
y-axis are associated with high-variance genes. The GO terms are filtered for gene counts greater than 100, as
in Fig 4. Some of the top high- and low-skewness terms are labeled for illustration.
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deciles. GO termswith low entropy indicate some deciles are over-represented in the genes associatedwith that165

term. We also measured skewness for each term, which should be zero if no decile is over-represented, nega-
tive if high-variance terms are over-represented, and positive if low-variance deciles are over-represented. The
relation between skewness and entropy for each GO term can be seen in Fig 3 and in S6 Dataset. Positive-skew
low-entropy terms, those enriched with low-variance genes, are associated with housekeeping functions, like
RNA localization, translation initiation, methylation, and chromosome segregation (Fig 4A). Likewise, terms170

with negative skew and low entropy, enriched for high-variance genes, are related to immune response, tis-
sue morphogenesis, chemotaxis—all dynamic biological functions related to interacting with the environment
(Fig 4B).

Both GO analyses suggest a strong association between biological function and the degree of transcriptional
variance. Genes associated with baseline fundamental functions, expected to be under strong stabilizing selec-175

tion, are also low-variance; high-variance genes are associated with responding to external stimuli (i.e., tissue
reorganization and immune response).

Figure 4: Distributions of decile ranks of level-3 GO terms. Each plot shows the count of genes in each decile
of the rank. Only GO terms that are associated with at least 100 genes are used. We sort these terms by the
skewness of the distribution. The top panel (A) shows the 5most positively skewed terms, and the bottom panel
(B) shows the 5 most negatively skewed terms.

Environmental sensitivity predicts transcriptional variance

As suggested by our GO enrichment analyses, one mechanism that may generate consistent variability in gene
expression is the response to environmental inputs. In other words, high-variance genes may be those that are180

environmentally sensitive, while low-variance genes may be robust to environmental stimuli or perturbations
(or alternatively, responsive to all stimuli, such that they are always highly expressed across individuals). To
understand the relationship between environmental sensitivity and variance, we drew on gene expression data
froma recently generated catalog of environmentally responsive genes in lymphoblastoid cell lines (LCLs). This
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catalog was generated by exposing 544 LCLs derived from individuals included in the 1000 Genomes Project to185

each of 11 in vitro exposures (including immune signaling molecules, hormones, and man-made chemicals), as
well as a control; these manipulations of the cellular environment were followed bymRNA-seq and differential
expression analyses comparing each treatment to its control [25]. Using lists of environmentally responsive
genes derived from this study, we found that high-variance genes were more likely to respond to at least one
in vitro exposure, relative to genes not classified as high- or low-variance (Fisher’s exact test: p < 0.05, odds190

= 1.524); as predicted, the same is not true for low-variance genes (Fisher’s exact test: p = 0.993, odds = 0.797).
Whenwe analyzed each exposure separately, we found that high-variance genes were more likely to be respon-
sive to 4 out of the 10 environments we explored (1 environment was dropped due to a lack of differentially
expressed genes in the original experiment; Fisher’s exact test, FDR < 10%; S2 Table). These exposures included
key immune stimuli and hormones such as interferon gamma and dexamethasone (a synthetic glucocorticoid).195

In contrast, we found that low-variance genes showed the opposite pattern: they are significantly underrepre-
sented among environmentally responsive genes across 4/10 environments (Fisher’s exact test, FDR < 10%; S2
Table). Though not all of our environment-specific tests reached statistical significance, it is also worth noting
that almost all 10 environments showed concordance in effect size direction (i.e., high-variance genes tended
to be overrepresented among environmentally responsive genes and low-variance genes tended to be under-200

represented). While the above analyses show that high-variance genes tend to overlap with genes induced by
a given exposure, we hypothesized that genes that are similarly induced by many different exposures may, in
fact, exhibit moderate or low variance. In other words, genes induced by many stimuli may always be highly
expressed across individuals, and thus low variance, while genes induced by select stimuli may only be upregu-
lated in a subset of the population, and thus exhibit high variance. In support of this idea, we found that, among205

genes that responded to at least one environment in the LCL experiment, high-variance genes responded to a
median of only one environment, while both low-variance genes and the background set responded to amedian
of 4/10 environments (generalized linear model comparing high-variance to background and low-variance, p <
10-7 and p < 10-11, respectively). Thus, high-variance genes are indeed more likely to be environmentally sensi-
tive, but in a highly select and stimulus-specificmanner,whichwehypothesize drives their between-individual210

heterogeneity. We note that all analyses presented in this section focused on the composite set of high- and low-
variance genes defined across tissues, but we obtain similar results when focusing on blood, the tissue in our
dataset most similar to LCLs (S2 Table).

Evolutionary forces at play in shaping transcriptional variance

Weuse three gene-level summary statistics, nucleotide diversity (π), gene expression connectivity, and the rate215

of adaptive substitutions (α), as a proxy to assess whether selection might be involved in shaping gene expres-
sion variance. For all the correlations in this section, we use partial Spearman correlations that include the
mean gene expression rank as a covariate, which accounts for any residual mean-variance correlation (Spear-
man correlation between mean and SD ranks, ρs = -0.07, p < 10-18). Nucleotide diversity in the gene region is
used as a proxy for the impact of cis-regulatory genetic variation on transcriptional variance. As expected, low-220

variance genes tend to have lower levels of polymorphisms (partial Spearman correlation, ρs = 0.184, p < 10-87).
Gene-gene connectivity, a proxy for gene regulatory interactions and selective constraints [26], is, in turn, neg-
atively correlated with the expression variance (partial Spearman correlation, ρs = -0.08, p < 10-21), supporting
the expectation that highly connected genes are more constrained in their variation. Finally, we also find that
low-variance genes tend to have fewer substitutions by comparing the across-study rank with𝛼 (partial Spear-225

man correlation, ρs = -0.044, p < 10-2), in linewith the expectation that genes under stronger selection should be
less variable. Despite all associations being significant and in the expected direction, their effect sizes are very
small, suggesting a weak link between these broad measures and transcriptional variance.
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Specific gene regulatory signatures are associated with transcriptional variance

To assess how local epigenetic features relate to gene expression variance we calculate the proportion of the230

gene (±10 kb) that corresponds to epigenetic signatures of gene regulation defined through ChromHMM [27]
chromatin states. Chromatin states associated with distal (i.e., non-promoter) gene regulation are positively
correlated with the across-study variance rank, regardless of whether the regulatory effect on gene expression
is positive or negative (Fig 5; see across-study correlations in S3A Fig). For example, both the proportion of
gene regions made up of enhancers and repressed genomic states are positively correlated with gene expres-235

sion variance (BH adjusted Spearman correlation, p < 0.05). In contrast, histone modifications associated with
active promoters, as well as transcribed states, are inversely correlated with gene expression variance (S3A
Fig), whereas they are positively correlated with the mean rank (S3B Fig). Taken together, these results are
compatible with gene expression variance being regulated through distal (i.e., non-promoter) gene regulatory
mechanisms, rather than the overall active transcriptional state of a gene region, as is the case with mean gene240

expression.

Figure 5: Proportion of gene regionsmade up of ChromHMMchromatin states for low- andhigh-variance genes.
The line plot contrasts the proportion of gene regions made up of the indicated chromatin states for genes in
the top and bottom 5% of the across-study variance rank metric. Ends denote the median proportion of gene
regionsmade up of the chromatin state, and error bars represent the standard error of themean. States colored
black are not significant, all others exhibit significant differences between low- and high-variance genes (BH
adjustedWilcoxon signed-rank test, p < 0.05). Het indicates heterochromatin; TSS, transcription start sites; znf,
zinc finger genes. Themean rank version of this analysis is shown in S4 Fig.

Given that ChromHMMchromatin states are available for specific tissues, we askedwhether the regulatory sig-
natures associatedwith the across-study variance rank are recapitulated at the tissue level. Many of the across-
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study correlations are recapitulated at the tissue-specific level (with two exceptions noted below), including a
strong and highly consistent positive correlation between the proportion of gene regions made up of enhancer245

states and that gene’s expression variance, and an inverse relationship between gene expression variance and
histone marks associated with gene transcription (S3A Fig). Two blood associations stand out as being differ-
ent from the consistent effects across the other tissue-level and across-study associations. First, the weak (i.e.,
histonemarks associated with both activating and repressive functions) promoter state is positively correlated
with transcriptional variance in all comparisons except blood. Second, the consistent inverse correlation of250

gene expression variance with weak transcription is reversed in blood, such that there is a positive correlation
betweenhistonemarks associatedwithweak transcriptionandbloodgeneexpressionvariance (S3AFig). Taken
together, these results suggest that, rather than geneswith a bivalent promoter state (i.e., poised genes) exhibit-
ing more expression variance, blood high-variance genes are more likely already expressed at basal levels (i.e.,
weakly transcribed), as discussed previously [28].255

Immediate early genes (IEGs) respond quickly to external signals without requiring de novo protein synthesis,
and a bivalent state has been reported to be associated with IEG promoters [reviewed in 29]. Given our results
that genes with high expression variance are enriched for cellular signaling and response mechanisms (S2A
Fig), and bivalent promoter states are correlated with the gene expression variance rank (S3A Fig), we hypoth-
esized that IEGs would be enriched within genes in the top expression variance ranks. This was the case for260

all tissue-level gene expression variance ranks (enrichment ratios range from 3.3-8.8, Bonferroni-adjusted hy-
pergeometric test, p < 0.05), except for blood (enrichment ratio = 1.2, hypergeometric test, p = 0.3). Thus, once
again, blood stands out when attempting to understand genomic regulatory drivers of expression variance. In
all, while high-variance genes are generally shared across tissues and enriched for immune and environmen-
tal signaling pathways, it seems that the gene regulatory mechanisms governing their expression are distinct265

between immune cell types and other tissues studied here.

Linking expression variance and disease

To explore the link between transcription variance and genes known to be associated with human diseases, we
used a data set designed to provide causal relationships between gene expressions and complex traits/diseases
(based on a probabilistic transcriptome-wide association study (PTWAS) [30]). Using the list of significant gene-270

disease pairs at 5% FDR provided by Zhang et al. [30], we performed a hypergeometric enrichment test for the
top 5% high- and low-variance genes in our across-study rank and in all tissue-specific gene variance ranks.
We use both across-study and tissue-specific ranks because some genes only appear in the tissue-specific rank
due to their limited tissue-specific gene expression. In the high-variance group, we find no enrichment in the
across-study rank, but we do find enrichment of genes annotated for allergy, immune disease, and endocrine275

system disease among the high-variance genes in several tissue-specific variance ranks. For example, among
high-variance genes in the colon, we see enrichment for endocrine system disease (1.77-fold, hypergeometric
test, p < 10-4). Among high-variance genes in the immune cells, we see enrichment for endocrine systemdisease
(1.67-fold, hypergeometric test, p < 10-3), allergy (1.7-fold, hypergeometric test, p < 10-3), and immune disease
(1.32-fold, hypergeometric test, p < 10-2). Among high-variance genes in the thyroid, we see enrichment for280

endocrine system disease (1.9-fold, hypergeometric test, p < 10-5), allergy (1.85-fold, hypergeometric test, p <
10-4), and immune disease (1.45-fold, hypergeometric test, p < 10-4). These are all rather similar and suggest a
stable pattern of high-variance gene expression across these tissues, with enrichment for these three classes of
diseases. The linkwith immunediseases is expected given thehigh enrichment for immune-related genes in the
high-variance group [8]. As for the low-variance group, we found strong enrichment for genes associated with285

psychiatric and neurological disorders in the across-study rank and in some tissue-specific ranks (breast, liver,
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and stomach; ~1.2-fold enrichment, hypergeometric test, p < 0.05, for all cases). The psychiatric disease link is
consistent with previous work [7] and is discussed below; however, the enrichment among the low-variance
genes is weaker.

Discussion290

Using large publicly available data sets allowed us to probe the landscape of transcriptional variance in humans.
We find a broadly similar pattern of transcriptional variance, evidenced by the high correlations between gene
expression variance across most studies, consistent with measurements of expression variance for various tis-
sues [6,17]. Leveraging this similarity between gene expression variance across tissues and contexts, we devel-
oped amultivariate strategy to create a single rank of expression variance, which allowed us to order almost 13k295

genes (~65% of the genes expressed in humans) according to their transcriptional variance. Using this rank, we
were able to study the general properties associatedwith high- and low-variance genes aswell as factors driving
variation in variance across genes.

Some differences in gene expression variance were driven by technical aspects of gene expression measure-
ment (with data derived from large consortia showing more similar patterns of variance across genes), and by300

tissue (with studies using the same tissues also showing higher similarities). This suggests that careful consid-
eration of sample sizes and experimental design are fundamental to the study of gene expression variance, and
the usual small samples of RNA-seq studies might be underpowered for the study of this particular aspect of
gene expression. In particular, comparing studies within GTEx was associated with higher similarities in gene
expression variance rank. This higher similarity could be due to some individuals being included in more than305

oneGTEx study, and therefore the same eQTLs could be driving similarities in gene expression variance in these
samples. However, both the effects of study origin and tissue were small, and the largest drivers of differences
across studies were idiosyncratic differences related to single data sets, with tissues known to have divergent
gene expression patterns (i.e., bone marrow, blood, testis, and platelets) also showing the largest differences in
gene expression variance. Understanding the consequences of these differences in variance for specific tissues310

is still an open field. Also, because we are working with bulk samples, a part of these differences could be due
to cell-type heterogeneity across samples [31]. Furthermore, variation in single cell expression has also been
linked to cell-type function [9]. In summary, it is clear, that differences in variance are informative beyond the
differences in mean expression. Even after we account for differences in mean expression, differences in gene
expression variance carry information about tissue origin and function.315

Functional analyses usingGO enrichment indicated a clear link between function and gene expression variance.
On the one hand, genes with high transcriptional variance were enriched for biological functions related to
response to environmental stimuli, such as immune function and tissue reconstruction. On the other hand, low-
variance geneswere enriched for basic cell functions, (e.g., RNA processing, translation, DNAmethylation, and
cell duplication). These results are consistent with previous analyses of gene expression variance on a tissue-320

by-tissue basis [17]. This pattern of enrichment is also observed when we look at enrichment for high- or low-
variance genes within the genes associated with each term in the GO hierarchy. Basic cell function terms are
enriched for low-variance genes, and terms involved in response to external stimulus are enriched for high-
variance genes.

While indirect, all these patterns point to a selective structuring of gene expression variance. Stabilizing and325

purifying selection are consistent: genes expected to be under strong stabilizing selection, those linked with
fundamental baseline biological processes, are indeed overrepresented in the least variable genes. These same
genes are also expected to be under strong purifying selection and to show low levels of polymorphisms, which
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we observe. Likewise, genes whose function is constrained by myriad interactions with several other genes,
those with high connectivity, are less variable. Furthermore, genes involved with direct interaction with the330

environment, which must change their pattern of expression depending on external conditions, are expected
to be more variable, and again we see a strong enrichment of environmentally responsive genes among the
most variable. Given this strong link between function and variance, it is not surprising that the gene variance
ranking is similar across data sets.

One interesting aspect of the GO term analysis shown in Fig 3 and Fig 4 is that there is no GO biological process335

term associated with enrichment for intermediate variance genes: the low-entropy terms have either positive
or negative skew, never zero skew. In other words, there is no annotated biological process for which the as-
sociated genes are kept at some intermediary level of variation. For the GO terms we used, either there is no
relation between the transcriptional variance and the biological process, or there is a strong bias toward high or
low-variance genes. This suggests that selective shaping of gene expression has twomodes, correspondingwith340

(1) biological processes under strong stabilizing selection (i.e., variance-reducing selection) or (2) biological
processes under disruptive selection (i.e., variance-increasing selection). The only outlier in the skewness-by-
entropy relation is the “oxidative phosphorylation” term, which displays relatively low entropy and low skew-
ness, and indeed we see that there is some enrichment for intermediate variance rank in the genes associated
with this term (S6 Fig). In short, we find strong support for the idea that there are geneswith consistentlymore345

(or less) variable expression levels, and that these differences in variance are the result of different patterns of
selection.

Following Alemu et al. [17], we observe that epigenetic signatures of gene regulation, such as enhancer histone
marks, make up a higher proportion of the surrounding genomic regions of genes that exhibit higher variance
in expression. In contrast, an accumulation of strong promoter elements and overall transcriptional activation350

is associated with genes with lower expression variance. These results suggest the presence of distinct modes
of regulation for genes with high vs. low variance. Combined, the differences in the types of genomic regula-
tory features surrounding the high- and low-variance genes and their distinct functional annotations suggest
different mechanisms of regulation of their gene expression variance [17]. This heterogeneity could lead to de-
tectable differences in selection signatures between distal regulatory elements and promoters, depending on355

the transcriptional variance. This heterogeneity in regulation for high and low-variance genes suggests that
important biological information has been overlooked given the focus that the field has placed on understand-
ing gene expression robustness, in the sense of reducing variation [32–35]. For example, Siegal and Leu [32]
provide several examples of known regulatory mechanisms for reducing gene expression variance, but no ex-
amples for the maintenance of high gene expression variance. We posit that it should be possible to go beyond360

the usual characterization ofmechanisms of gene expression robustness, in the sense of reducing variation, and
to explore mechanisms for the robustness of plasticity, that is, the maintenance of high levels of gene expression
variation given environmental cues.

Given the broad consistency of gene expression variance in healthy tissues, a natural question is how do these
well-regulated levels of variation behave in disease conditions. We find some suggestive links between tissue-365

specific variance ranks and disease, but these links need to be further explored using more specific methods.
Comparing two HapMap populations, Li et al. [6] showed that gene expression variance was similar in both
populations and that high-variance genes were enriched for genes related to HIV susceptibility, consistent
with our observation of enrichment for immune-related genes among those with more variable expression.
In a case-control experiment, Mar et al. [7] showed that expression variance was related to disease status in370

Schizophrenia and Parkinson’s disease patients, with altered genes being non-randomly distributed across sig-
naling networks. These authors also find a link between gene network connectivity and expression variance, in
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agreement with the effect we find using the gene expression variance rank. The pattern of variance alteration
differed across diseases, with Parkinson’s patients showing increased expression variance, and Schizophrenia
patients showing more constrained patterns of expression. The authors hypothesize that the reduced variance375

in Schizophrenia patients reduces the robustness of their gene expression networks, what we refer to as a loss
of plasticity. This suggests that several types of shifts in gene expression variation are possible, each with dif-
ferent outcomes. We highlight three distinct possibilities: First, low-variance genes, under strong stabilizing
selection, could become more variable under stress, indicating a reduced capacity for maintaining homeosta-
sis. Second, high-variance genes, expected to be reactive to changes in the environment, could become less380

variable, indicating a reduced capacity to respond to external stimuli. Third, the covariance between different
genes could be altered, leading to decoherence between interdependent genes [36]. Any one of these changes in
expression variance patterns could have physiological consequences, and exploring these differences should be
amajor part of linking gene expression to cell phenotypes and function (seeHagai et al. [8] for example). Genes
are also expected to differ in their capacity tomaintain an optimal level of gene expression variance [34]. Varia-385

tion in robustness is linked to gene regulatory networks and epigenetic gene expression regulation [33,37] and,
therefore, should differ across high- and low-variance genes. Our results suggest that the mechanisms respon-
sible for maintaining optimal levels of variation in high- and low-variance could differ and that this variability
is the result of different patterns of selection.

Methods390

Data sources
Weselected 57humanRNA-seqdata sets fromthepublic geneexpressionrepositories recount3 [38] andExpressionAtlas [39].
We only used data sets with an associated publication, for which raw read count and sample-level metadata were available.
Because we are interested in individual-level variation of gene expression, we exclude single-cell studies. Metadata and
details on the included data sets can be found in the S1 Dataset. We use the word “studies” to refer to independent data sets,395

which could have been generated by the same consortium. For example, the GTEx data are separated by tissue, andwe refer
to each tissue as a separate study. We divide our data sets into three categories depending on their origin: GTEx, TCGA, and
Miscellaneous.

Table 1: Data set source references. Columns show the study ID, with the corresponding tissue in parentheses,
and the source publication.

Study ID Citation

ADIPOSE_TISSUE (Fat), ADRENAL_GLAND (Adrenal), BLOOD (Blood),
BLOOD_VESSEL (Blood_vessel), BONE_MARROW (Marrow), BRAIN
(Neuron), HEART (Heart), BREAST (Breast), SALIVARY_GLAND (Salivary),
COLON (Colon), LIVER (Liver), NERVE (Neuron), LUNG (Lung), PANCREAS
(Pancreas), MUSCLE (Muscle), THYROID (Thyroid), OVARY (Ovary),
STOMACH (Stomach), ESOPHAGUS (Esophagus), SPLEEN (Spleen),
PROSTATE (Prostate), SKIN (Skin), PITUITARY (Pituitary), TESTIS (Testis)

The GTEx Consortium, 2020 – [40]

LUSC (Lung), STAD (Stomach), COAD (Colon), LUAD (Lung), BRCA (Breast),
KIRC (Kidney), KIRP (Kidney), LIHC (Liver), THCA (Thyroid), PRAD
(Prostate), UCEC (Uterus)

The Cancer Genome Atlas Research
Network et al., 2013 – [18]

SRP150552 (Blood) Altman et al., 2019 – [41]
SRP101294 (Fat) Armenise et al., 2017 – [42]
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Study ID Citation

SRP057500 (Platelets) Best et al., 2015 – [43]
SRP051848 (Immune) Breen et al., 2015 – [44]
SRP187978 (Liver) Çalışkan et al., 2019 – [45]
E-ENAD-34 (Immune) Chen et al., 2016 – [46]
SRP059039 (Blood) DeBerg et al., 2018 – [47]
SRP174638 (Immune) Dufort et al., 2019 – [48]
E-GEOD-57945 (Colon) Haberman et al., 2014 – [49]
SRP162654 (Blood) Harrison et al., 2019 – [50]
SRP095272 (Blood) Jadhav et al., 2019 – [51]
SRP102999 (Blood) Kuan et al., 2017 – [52]
SRP145493 (Immune) Kuan et al., 2019 – [53]
E-GEUV-1 (Immune) Lappalainen et al., 2013 – [54]
SRP035988 (Skin) Li et al., 2014 – [55]
SRP192714 (Blood) Michlmayr et al., 2020 – [56]
ERP115010 (Blood) Roe et al., 2020 – [57]
E-ENAD-33 (Neuron) Schwartzentruber et al., 2018 – [58]
SRP181886 (Neuron) Srinivasan et al., 2020 – [59]
SRP098758 (Blood) Suliman et al., 2018 – [60]
SRP032775 (Blood) Tran et al., 2016 – [61]
SRP069212 (Liver) Yang et al., 2017 – [62]

Processing pipeline
We use a standardized pipeline to measure gene expression variance while removing extraneous sources of variation. Be-400

cause we are interested in variation under non-perturbed conditions, data from case-control studies were filtered to keep
only control samples. Technical replicates were summed. For each study, we filtered genes that did not achieve a minimum
of 1 count per million (cpm) reads in all samples and a mean of 5 cpm reads across samples. To account for library size and
the mean-variance relation in RNA-seq count data, we applied a variance stabilizing transformation implemented in the
function vst from the DESeq2 R package [63] to the genes passing the read-count filters. This mean-variance correction was405

verified by plotting mean-variance relations before and after correction, and these plots can be seen in S1 Appendix. Some
studies still show higher variances for genes with lower expression even after the vst correction, like BLOOD, COLON, and
STAD, but given that these do not show a large difference in the variance rankwhen compared to the other studies, we do not
expect this residual mean effect to be relevant. Various technical covariates (like experimental batch, sex, etc.) weremanu-
ally curated fromthemetadata associatedwith each studyandaccounted forusingan independent linearfixed-effectsmodel410

for each study. A list of covariates used for each study is available in S1 Dataset. Outlier individuals in the residual distribu-
tion were removed using a robust Principal Component Analysis (PCA) approach of automatic outlier detection described
in [64]. This procedure first estimates robust Principal Components for each study and thenmeasures theMahalanobis dis-
tance between each sample and the robust mean. Samples that are above the 0.99 percentile inMahalanobis distance to the
mean are marked as outliers and removed. We verify that the batch effect correction and outlier removal are reasonable415

by using PCA scatter plots after each step of the pipeline to check the result for residual problems like groupings or other
artifacts. These PCA plots before and after batch correction and outlier removal are also included in S1 Appendix. After all
sample filtering, the mean sample size we used for each data set was 390, with a median of 251, and ranged from 12 to 2931
samples. Gene expression standard deviations (SDs) are measured as the residual standard deviations after fixed effect cor-
rection and outlier removal. We choose standard deviation as ameasure of variation to have a statistic on a linear scale, and420

we do not use the coefficient of variation becausewe have already corrected formean differences and for themean-variance
relation inherent to RNA-seq count data [1].
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Correlations in transcriptional variance
Weassessed the similarity in gene expression variance across studies by using an across-study Spearman correlationmatrix
of themeasured SDs. Only genes present in all studies were used to calculate the Spearman correlationmatrix, ~4200 genes425

in total. To do this, the SDs for this common subset of genes are organized in a 𝑁 × 𝑝 matrix 𝐷, where 𝑁 is the number
of genes and 𝑝 the number of studies. Then, we take the Spearman correlation between all the columns of 𝐷, resulting in
a symmetric 𝑝 × 𝑝 correlation matrix 𝜌 (shown in Fig 2A). Using Spearman correlations avoids problems related to overall
scaling or coverage differences, and allows us to assess if the same genes are usually more or less variable across studies.

To investigate the factors affecting the correlationsbetween studies,weusedaBayesian randomeffectsmodel to estimate the430

effect of studyoriginand tissueon the correlations across studies. Thismodel is designed to take thenon-independentnature
of a set of correlations into account when modeling the correlation between gene expression SDs. This is accomplished by
adding a per-study random effect, see [22] for details. For each pair of studies 𝑖 and 𝑗, the Fisher z-transformed Spearman
correlation between their SDs (𝑧(𝜌𝑖𝑗)) is modeled as:

𝑧(𝜌𝑖𝑗) ∼ 𝑁(𝜇𝑖𝑗, 𝜎), for all 𝑖 > 𝑗
𝜇𝑖𝑗 = 𝜇0 + 𝛼𝑖 + 𝛼𝑗 + 𝛽[𝑡𝑖𝑗] + 𝛾[𝑠𝑜𝑖𝑗]

𝛼𝑖 ∼ 𝑁(0, 𝜎𝛼), for 𝑖 = 1 … 57
𝛾𝑘 ∼ 𝑁(0, 1/4), for 𝑘 = 1 … 6
𝛽𝑙 ∼ 𝑁(0, 1/4), for 𝑙 = 1, 2
𝜇0 ∼ 𝑁(0, 1)

𝜎, 𝜎𝛼 ∼ 𝐸𝑥𝑝(1)

The 𝛼𝑖 terms account for the non-independence between the pairs of correlations and estimate the idiosyncratic contribu-435

tion of each study to all the correlations it is involved in. We measure the effects of tissue congruence and study-origin
congruence on the correlations using the fixed effect coefficients 𝛽𝑙 and 𝛾𝑘. The 𝛽𝑙 coefficients measure the effect of studies
𝑖 and 𝑗 sharing the same tissue (index variable 𝑡𝑖𝑗 = 1) or not (𝑡𝑖𝑗 = 2). The 𝛾𝑘 coefficientsmeasure the effect of comparing
studies with the same or different study-origins, and the index variable 𝑠𝑜𝑖𝑗 codifies all six of the unique pairwise combi-
nations between GTEx, TCGA, and Misc (index variable 𝑠𝑜𝑖𝑗 = 1 implies a comparison between 𝑖 in GTEx and 𝑗 in GTEx,440

𝑠𝑜𝑖𝑗 = 2would be a comparison between GTEx andMisc, and so on). We also explored a version of thismodel that included
the effect of sample size on the pairwise correlations, but sample size did not have a relevant effect and sowas dropped in the
final model. All fixed effect parameters (𝛽𝑙 and 𝛾𝑘) receive weakly informative normal priors with a standard deviation of
one quarter and amean of zero. This choice of prior implies a plausible range of -1 to 1 for each of the fixed effects coefficients,
which is appropriate given that the range of 𝑧(𝜌𝑖𝑗) is approximately 0 to 1.5. For the residual standard deviation (𝜎) and the445

random effects standard deviation (𝜎𝛼), we use an exponential prior with a rate of one, and for the intercept (𝜇0), a normal
prior with a mean of zero and a standard deviation of one. This model was fit in Stan [65] via the rethinking R package [66],
using eight chains, with 4000warm-up iterations and 2000 sampling iterations per chain. Convergencewas assessed using
R-hat diagnostics [67], and we observed no warnings or divergent transitions.

Gene expression SD rank: Given that most of the variation in the Spearman correlation across studies is explained by a450

single principal component (PC1 accounts for 62% of the variation in the across-study Spearman correlation matrix, while
PC2 accounts for only 5%; see S5 Fig), we use the ranked projections of gene expression SDs in this principal component (PC1)
to create an across-study rank of gene variation. The higher the rank, the higher the expression SD of a given gene. Genes
that were expressed in at least 50% of the studies were included in the rank. To project a particular gene onto the PC1 of the
across-study correlation matrix, we impute missing values using a PCA-based imputation [68]. The imputation procedure455

hasminimal effect on the ranking and imputingmissingSDranks at thebeginning or at the endof the ranksproduces similar
results. We also create a tissue-specific variance ranking, using the same ranking procedure but joining studies done in the
same tissue type. For this tissue-level ranking, we only use genes that are expressed in all studies of a given tissue, and in
this case, no imputation is required. For tissues that are represented by a single study, we use the SD ranking for that study
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as the tissue rank.460

Gene expression mean rank: We also use the same strategy to create a mean gene expression rank, repeating the process
but using mean expression instead of standard deviation. All ranks are available in S4 Dataset.

Gene level statistics
Genetic variation: Genetic variation measures were obtained from the PopHuman project, which provides a comprehen-
sive set of genomic information for human populations derived from the 1000 Genomes Project. Gene-level metrics were465

used when available. If only window-based metrics are available, we assembled gene-level information from 10 kb window
tracks where each window that overlaps with a given gene was assigned to the gene and the mean metric value is reported.
In parallel, weuse the PopHumanScandata set, which expands PopHumanby compiling and annotating regions under selec-
tion. Similarly, we used gene-level information when possible, and for tracks with only window-based metrics, gene-level
information was assembled from the 10 kb windows using the same assignment method described above. Nucleotide diver-470

sity (𝜋), the average pairwise number of differences per site among the chromosomes in a population [69], provides insight
into the genetic diversity within a population, in this case, the CEU population within 1000 genomes.

Gene connectivity: For each data set, we calculated the weighted connectivity for all genes by creating a fully connected
gene-by-gene graph in which each edge is weighted by the Spearman correlation between gene expression levels across
samples. We then trimmed this graph by keeping only edges for which the Spearman correlation is significant at a BH false475

discovery rate of 1%. In this trimmed network, we then took the sum of the Spearman correlation of all remaining edges for
each gene. So, for each study, we have a measure of the total correlation of each gene with every other gene. The weighted
connectivity for each gene is the average across all studies in which that gene is expressed.

Cross-tissue vs. tissue-level chromatin states: We use the universal [70] and tissue-specific [71] ChromHMM [27] chro-
matin states to compare thenon-overlappinggenomesegmentation to cross-tissueand tissue-level geneexpressionvariance480

metrics. We use the proportion of the gene regions (gene ± 10 kb) made up of each of the ChromHMM chromatin states.

Correlations: We use the ppcor R package v1.1 [72] to calculate the pairwise partial Spearman correlations between gene-
level statistics and the gene expression variance rankwhile controlling for themean expression rank. P-values are corrected
using the Benjamini-Hochberg procedure and comparisons with an adjusted p<0.05 are considered significant.

Gene function assessment485

GO term enrichment: All gene ontology (GO) analyses were done using the clusterProfiler R package v4.2.2 [73] and the
Org.Hs.eg.db database package v3.14.0 [74]. GO and all further enrichment analyses used the hypergeometric test to assess
the significance of the enrichment. Level-3 GO terms used in the skewness by entropy analysis can be found in S6 Dataset,
along with the estimated skewness and entropy values.

Environmentally responsive genes: We used the list of environmentally responsive genes available in the supporting infor-490

mation from Lea et al. [25]. When we overlapped the list of LCL-expressed genes with our list of ranked genes, we retained
9282 genes in the cross-tissue analyses presented in the main text, and 5574 genes in the blood-specific analyses presented
in S1 Table. We used Fisher’s exact tests to askwhether high-variance genesweremore likely to be responsive to >0 environ-
ments relative to all genes not included in the low-variance category (and vice versa for low-variance genes). We also used
Fisher’s exact tests followedbyBenjamini-Hochberg false discovery rate correction to askwhetherhigh-variance geneswere495

more likely to be responsive to each individual environment relative to all genes not included in the low-variance category
(and vice versa for low-variance genes). Finally, we used generalized linearmodels with a Poisson error structure to test for
an effect of gene category (high-variance, low-variance, or neither) on the number of environments that a gene responded
to (ranging from 0-11).

Housekeeping genes: Human housekeeping genes were identified as genes that are expressed with low variance in all 52500

human cell and tissue types, assessed in over 10,000 samples [23]. We test for enrichment of housekeeping genes in the genes
within the highest and lowest 5% of gene expression variance rank.
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Probability of being loss-of-function intolerant (pLI): Genes that are likely haploinsufficient (i.e., intolerant of heterozy-
gous loss-of-function variants)were detected as thosewith fewer than expected protein-truncating variants (PTVs) in ExAC
[75]. We use genes with a pLI > 0.9 to test for the enrichment of loss-of-function intolerant genes in the genes exhibiting the505

highest and lowest 5% gene expression variance estimates.

Secreted genes: We useThe Protein Atlas [76] to extract information onwhich proteins are secreted [77] and test for enrich-
ment of genes with secreted products in the genes within the highest and lowest 5% of gene expression variance rank.

Immediate early genes (IEGs): Human IEGs were curated from the literature in [78] as genes that respond to experimental
stimulation through up-regulation within the first 60 minutes of the experiment. We use the hypergeometric test to assess510

the significance of the enrichment. Immediate early genes (IEGs): Human IEGs were curated from the literature in [78] as
genes that respond to experimental stimulation through up-regulation within the first 60 minutes of the experiment.

Disease annotations: We use the gene annotations for involvement with diseases provided by the supporting information
Table S2 from Zhang et al. [30] and test for enrichment for disease annotations in the genes within the highest and lowest
5% of gene expression variance rank.515

Supporting information
All relevantdataarewithin thepaperand itsSupporting Informationfiles, andathttps://github.com/diogro/expressionVariance-
manuscript (archived at doi: 10.5281/zenodo.8028690).

1. S1 Fig – Modeling the correlations between transcriptional variance across studies.

2. S2 Fig – GO enrichment analysis of the most and least variable genes.520

3. S3 Fig – Across-study and tissue-specific gene expression variance andmean correlationswith non-overlapping chro-
matin states through ChromHMM.

4. S4 Fig – Proportion of gene regions made up of ChromHMM chromatin states for genes in the top and bottom 5% of
the across-study mean rankmetric.

5. S5 Fig – Scree plot showing variance explained by each PC of the across-study Spearman correlation matrix of gene525

expression standard deviations.

6. S6 Fig – Distributions of decile ranks of the GO term oxidative phosphorylation.

7. S1 Table – Variance andmean rankmetrics and the corresponding ChromHMM annotations used.

8. S2 Table – Enrichment analysis of environmentally responsive genes in LCLs.

9. S1 Appendix – Diagnostics plots for processing pipeline.530

10. S1 Dataset – Studymetadata. Metadata file describing the data used in the study aswell as some intermediate process-
ing information.

11. S2 Dataset – Study gene lists. List of genes included in each study after filtering.

12. S3 Dataset – Gene expression means and standard deviations. Tables with final calculated means and standard devia-
tions.535

13. S4 Dataset – Gene ranks. Gene expression mean and variance ranks, across-study and tissue-specific.
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